On the usability of deep networks for object-based image analysis

Nicolas Audebert, Bertrand Le Saux, Sébastien Lefèvre

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

12 Downloads (Pure)

Abstract

As computer vision before, remote sensing has been radically changed by the introduction of Convolution Neural Networks. Land cover use, object detection and scene understanding in aerial images rely more and more on deep learning to achieve new state-of-theart results. Recent architectures such as Fully Convolutional Networks (Long et al., 2015) can even produce pixel level annotations for semantic mapping. In this work, we show how to use such deep networks to detect, segment and classify different varieties of wheeled vehicles in aerial images from the ISPRS Potsdam dataset. This allows us to tackle object detection and classification on a complex dataset made up of visually similar classes, and to demonstrate the relevance of such a subclass modeling approach. Especially, we want to show that deep learning is also suitable for object-oriented analysis of Earth Observation data. First, we train a FCN variant on the ISPRS Potsdam dataset and show how the learnt semantic maps can be used to extract precise segmentation of vehicles, which allow us studying the repartition of vehicles in the city. Second, we train a CNN to perform vehicle classification on the VEDAI (Razakarivony and Jurie, 2016) dataset, and transfer its knowledge to classify candidate segmented vehicles on the Potsdam dataset.
Original languageEnglish
Title of host publicationProceedings of GEOBIA 2016 : Solutions and synergies, 14-16 September 2016, Enschede, Netherlands
EditorsN. Kerle, M. Gerke, S. Lefevre
Place of PublicationEnschede
PublisherUniversity of Twente, Faculty of Geo-Information Science and Earth Observation (ITC)
Number of pages7
ISBN (Print)978-90-365-4201-2
DOIs
Publication statusPublished - 14 Sept 2016
Externally publishedYes
Event6th International Conference on Geographic Object-Based Image Analysis, GEOBIA 2016: Solutions & Synergies - University of Twente Faculty of Geo-Information and Earth Observation (ITC), Enschede, Netherlands
Duration: 14 Sept 201616 Sept 2016
Conference number: 6
https://www.geobia2016.com/

Conference

Conference6th International Conference on Geographic Object-Based Image Analysis, GEOBIA 2016
Abbreviated titleGEOBIA
Country/TerritoryNetherlands
CityEnschede
Period14/09/1616/09/16
Internet address

Fingerprint

Dive into the research topics of 'On the usability of deep networks for object-based image analysis'. Together they form a unique fingerprint.

Cite this