TY - JOUR
T1 - On the use of explainable AI for susceptibility modeling: Examining the spatial pattern of SHAP values
AU - Wang, Nan
AU - Zhang, Hongyan
AU - Dahal, Ashok
AU - Cheng, Weiming
AU - Zhao, Min
AU - Lombardo, Luigi
N1 - Publisher Copyright:
© 2024 China University of Geosciences (Beijing) and Peking University.
PY - 2024/7
Y1 - 2024/7
N2 - Hydro-morphological processes (HMP, any natural phenomenon contained within the spectrum defined between debris flows and flash floods) are globally occurring natural hazards which pose great threats to our society, leading to fatalities and economical losses. For this reason, understanding the dynamics behind HMPs is needed to aid in hazard and risk assessment. In this work, we take advantage of an explainable deep learning model to extract global and local interpretations of the HMP occurrences across the whole Chinese territory. We use a deep neural network architecture and interpret the model results through the spatial pattern of SHAP values. In doing so, we can understand the model prediction on a hierarchical basis, looking at how the predictor set controls the overall susceptibility as well as doing the same at the level of the single mapping unit. Our model accurately predicts HMP occurrences with AUC values measured in a ten-fold cross-validation ranging between 0.83 and 0.86. This level of predictive performance attests for an excellent prediction skill. The main difference with respect to traditional statistical tools is that the latter usually lead to a clear interpretation at the expense of high performance, which is otherwise reached via machine/deep learning solutions, though at the expense of interpretation. The recent development of explainable AI is the key to combine both strengths. In this work, we explore this combination in the context of HMP susceptibility modeling. Specifically, we demonstrate the extent to which one can enter a new level of data-driven interpretation, supporting the decision-making process behind disaster risk mitigation and prevention actions.
AB - Hydro-morphological processes (HMP, any natural phenomenon contained within the spectrum defined between debris flows and flash floods) are globally occurring natural hazards which pose great threats to our society, leading to fatalities and economical losses. For this reason, understanding the dynamics behind HMPs is needed to aid in hazard and risk assessment. In this work, we take advantage of an explainable deep learning model to extract global and local interpretations of the HMP occurrences across the whole Chinese territory. We use a deep neural network architecture and interpret the model results through the spatial pattern of SHAP values. In doing so, we can understand the model prediction on a hierarchical basis, looking at how the predictor set controls the overall susceptibility as well as doing the same at the level of the single mapping unit. Our model accurately predicts HMP occurrences with AUC values measured in a ten-fold cross-validation ranging between 0.83 and 0.86. This level of predictive performance attests for an excellent prediction skill. The main difference with respect to traditional statistical tools is that the latter usually lead to a clear interpretation at the expense of high performance, which is otherwise reached via machine/deep learning solutions, though at the expense of interpretation. The recent development of explainable AI is the key to combine both strengths. In this work, we explore this combination in the context of HMP susceptibility modeling. Specifically, we demonstrate the extent to which one can enter a new level of data-driven interpretation, supporting the decision-making process behind disaster risk mitigation and prevention actions.
KW - ITC-GOLD
KW - ITC-ISI-JOURNAL-ARTICLE
U2 - 10.1016/j.gsf.2024.101800
DO - 10.1016/j.gsf.2024.101800
M3 - Article
SN - 1674-9871
VL - 15
JO - Geoscience Frontiers
JF - Geoscience Frontiers
IS - 4
M1 - 101800
ER -