One Step Toward a New Generation of C-MOS Compatible Oxide P-N Junctions: Structure of the LSMO/ZnO Interface Elucidated by an Experimental and Theoretical Synergic Work

Daniele Pullini, Mauro Francesco Sgroi*, Agnes Mahmoud, Nicolas Gauquelin, Lorenzo Maschio, Anna Maria Ferrari, Rik Groenen, Cas Damen, Guus Rijnders, Karel Hendrik Wouter van den Bos, Sandra van Aert, Johan Verbeeck

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

5 Citations (Scopus)
82 Downloads (Pure)

Abstract

Heterostructures formed by La0.7Sr0.3MnO3/ZnO (LSMO/ZnO) interfaces exhibit extremely interesting electronic properties making them promising candidates for novel oxide p-n junctions, with multifunctional features. In this work, the structure of the interface is studied through a combined experimental/theoretical approach. Heterostructures were grown epitaxially and homogeneously on 4″ silicon wafers, characterized by advanced electron microscopy imaging and spectroscopy and simulated by ab initio density functional theory calculations. The simulation results suggest that the most stable interface configuration is composed of the (001) face of LSMO, with the LaO planes exposed, in contact with the (112Ì-0) face of ZnO. The ab initio predictions agree well with experimental high-angle annular dark field scanning transmission electron microscopy images and confirm the validity of the suggested structural model. Electron energy loss spectroscopy confirms the atomic sharpness of the interface. From statistical parameter estimation theory, it has been found that the distances between the interfacial planes are displaced from the respective ones of the bulk material. This can be ascribed to the strain induced by the mismatch between the lattices of the two materials employed.

Original languageEnglish
Pages (from-to)20974-20980
Number of pages7
JournalACS applied materials & interfaces
Volume9
Issue number24
DOIs
Publication statusPublished - 21 Jun 2017

Keywords

  • first principle simulation
  • heterostructure
  • LSMO
  • structural characterization
  • ZnO
  • 22/4 OA procedure

Fingerprint

Dive into the research topics of 'One Step Toward a New Generation of C-MOS Compatible Oxide P-N Junctions: Structure of the LSMO/ZnO Interface Elucidated by an Experimental and Theoretical Synergic Work'. Together they form a unique fingerprint.

Cite this