Organocatalytic Ring-opening Polymerization Towards Poly(cyclopropane)s, Poly(lactame)s, Poly(aziridine)s, Poly(siloxane)s, Poly(carbosiloxane)s, Poly(phosphate)s, Poly(phosphonate)s, Poly(thiolactone)s, Poly(thionolactone)s and Poly(thiirane)s

T. Wolf, F.R. Wurm

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

1 Citation (Scopus)

Abstract

The following chapter is a collection of monomers that undergo organocatalyzed ring-opening polymerizations and have not been covered in a separate chapter of this book. This includes polymers widely used in industrial applications, but also solely academically relevant and more “exotic” polymer classes. As most of these polymers contain heteroatoms in their backbone, the chapter is divided according to the respective heteroatoms. Each sub-section first gives a short introduction to the respective polymer or monomer properties and industrial applications (if available), followed by a brief summary of the traditional synthetic pathways. Afterwards, important milestones for the organocatalytic ROP are presented in chronological order. Special emphasis is put on the advantages and disadvantages of organocatalysis over traditional (ROP) methods on the basis of appropriate literature examples.
Original languageEnglish
Title of host publicationOrganic catalysis for polymerisation
EditorsAndrew Dove, Haritz Sardon, Stefan Naumann
Chapter10
ISBN (Electronic)978-1-78801-573-8
DOIs
Publication statusPublished - 2019
Externally publishedYes

Fingerprint Dive into the research topics of 'Organocatalytic Ring-opening Polymerization Towards Poly(cyclopropane)s, Poly(lactame)s, Poly(aziridine)s, Poly(siloxane)s, Poly(carbosiloxane)s, Poly(phosphate)s, Poly(phosphonate)s, Poly(thiolactone)s, Poly(thionolactone)s and Poly(thiirane)s'. Together they form a unique fingerprint.

  • Cite this