Abstract

Organs-on-chips are three-dimensional, microfluidic cell culture systems that simulate the function of tissues and organ subunits. Organ-on-chip systems are expected to contribute to drug candidate screening and the reduction of animal tests in preclinical drug development and may increase efficiency of these processes. To maximize the future impact of the technology on drug development, it is important to make informed decisions regarding the attributes and features of organs-on-chips even though the technology is still in a stage of early development. It is likely that different stakeholders in organ-on-chip development, such as engineers, biologists, regulatory scientists, and pharmaceutical researchers, will have different perspectives on how to maximize the future impact of the technology. Various aspects of organ-on-chip development, such as cost, materials, features, cell source, read-out technology, types of data, and compatibility with existing technology, will likely be judged differently by different stakeholders. Early health technology assessment (HTA) is needed in order to facilitate the essential integration of such potentially conflicting views in the process of technology development. In this critical review we discuss the potential impact of organs-on-chips on the drug development process, and we use a pilot study to give examples of how different stakeholders have different perspectives on attributes of organ-on-chip technology. As a future tool in early HTA of organs-on-chips, we suggest the use of multicriteria decision analysis (MCDA), which is a formal method to deal with multiple and conflicting criteria in technology development. We argue that it is essential to design and perform a comprehensive MCDA for organ-on-chip development, and so the future impact of this technology in the pharmaceutical industry can be maximized.
Original languageEnglish
Pages (from-to)74-81
JournalApplied in vitro toxicology
Volume2
Issue number2
DOIs
Publication statusPublished - 19 Feb 2016

    Fingerprint

Keywords

  • METIS-316098
  • IR-99632

Cite this