TY - JOUR
T1 - Organs-on-Chips in Drug Development: The Importance of Involving Stakeholders in Early Health Technology Assessment
AU - Middelkamp, Heleen H.T.
AU - van der Meer, Andries Dirk
AU - Hummel, J. Marjan
AU - Stamatialis, Dimitrios
AU - Mummery, Christine Lindsay
AU - Passier, Petrus Christianus Johannes Josephus
AU - IJzerman, Maarten Joost
PY - 2016/2/19
Y1 - 2016/2/19
N2 - Organs-on-chips are three-dimensional, microfluidic cell culture systems that simulate the function of tissues and organ subunits. Organ-on-chip systems are expected to contribute to drug candidate screening and the reduction of animal tests in preclinical drug development and may increase efficiency of these processes. To maximize the future impact of the technology on drug development, it is important to make informed decisions regarding the attributes and features of organs-on-chips even though the technology is still in a stage of early development. It is likely that different stakeholders in organ-on-chip development, such as engineers, biologists, regulatory scientists, and pharmaceutical researchers, will have different perspectives on how to maximize the future impact of the technology. Various aspects of organ-on-chip development, such as cost, materials, features, cell source, read-out technology, types of data, and compatibility with existing technology, will likely be judged differently by different stakeholders. Early health technology assessment (HTA) is needed in order to facilitate the essential integration of such potentially conflicting views in the process of technology development. In this critical review we discuss the potential impact of organs-on-chips on the drug development process, and we use a pilot study to give examples of how different stakeholders have different perspectives on attributes of organ-on-chip technology. As a future tool in early HTA of organs-on-chips, we suggest the use of multicriteria decision analysis (MCDA), which is a formal method to deal with multiple and conflicting criteria in technology development. We argue that it is essential to design and perform a comprehensive MCDA for organ-on-chip development, and so the future impact of this technology in the pharmaceutical industry can be maximized.
AB - Organs-on-chips are three-dimensional, microfluidic cell culture systems that simulate the function of tissues and organ subunits. Organ-on-chip systems are expected to contribute to drug candidate screening and the reduction of animal tests in preclinical drug development and may increase efficiency of these processes. To maximize the future impact of the technology on drug development, it is important to make informed decisions regarding the attributes and features of organs-on-chips even though the technology is still in a stage of early development. It is likely that different stakeholders in organ-on-chip development, such as engineers, biologists, regulatory scientists, and pharmaceutical researchers, will have different perspectives on how to maximize the future impact of the technology. Various aspects of organ-on-chip development, such as cost, materials, features, cell source, read-out technology, types of data, and compatibility with existing technology, will likely be judged differently by different stakeholders. Early health technology assessment (HTA) is needed in order to facilitate the essential integration of such potentially conflicting views in the process of technology development. In this critical review we discuss the potential impact of organs-on-chips on the drug development process, and we use a pilot study to give examples of how different stakeholders have different perspectives on attributes of organ-on-chip technology. As a future tool in early HTA of organs-on-chips, we suggest the use of multicriteria decision analysis (MCDA), which is a formal method to deal with multiple and conflicting criteria in technology development. We argue that it is essential to design and perform a comprehensive MCDA for organ-on-chip development, and so the future impact of this technology in the pharmaceutical industry can be maximized.
KW - 2023 OA procedure
U2 - 10.1089/aivt.2015.0029
DO - 10.1089/aivt.2015.0029
M3 - Article
SN - 2332-1512
VL - 2
SP - 74
EP - 81
JO - Applied in vitro toxicology
JF - Applied in vitro toxicology
IS - 2
ER -