Pancyclicity of Hamiltonian line graphs

E. van Blanken, J. van den Heuvel, J.P.M. van den Heuvel, H.J. Veldman

    Research output: Contribution to journalArticleAcademicpeer-review

    15 Citations (Scopus)
    98 Downloads (Pure)

    Abstract

    Let f(n) be the smallest integer such that for every graph G of order n with minimum degree 3(G)>f(n), the line graph L(G) of G is pancyclic whenever L(G) is hamiltonian. Results are proved showing that f(n) = ®(n 1/3).
    Original languageEnglish
    Pages (from-to)379-385
    Number of pages7
    JournalDiscrete mathematics
    Volume138
    Issue number138
    DOIs
    Publication statusPublished - 1995

    Keywords

    • METIS-140717
    • IR-30078

    Fingerprint Dive into the research topics of 'Pancyclicity of Hamiltonian line graphs'. Together they form a unique fingerprint.

  • Cite this

    van Blanken, E., van den Heuvel, J., van den Heuvel, J. P. M., & Veldman, H. J. (1995). Pancyclicity of Hamiltonian line graphs. Discrete mathematics, 138(138), 379-385. https://doi.org/10.1016/0012-365X(94)00220-D