Parameter dependence of solutions of the Cauchy–Riemann equation on weighted spaces of smooth functions

Karsten Kruse*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)
2 Downloads (Pure)

Abstract

Let Ω be an open subset of R2 and E a complete complex locally convex Hausdorff space. The purpose of this paper is to find conditions on certain weighted Fréchet spaces EV(Ω) of smooth functions and on the space E to ensure that the vector-valued Cauchy–Riemann operator ∂¯ : EV(Ω, E) → EV(Ω, E) is surjective. This is done via splitting theory and positive results can be interpreted as parameter dependence of solutions of the Cauchy–Riemann operator.

Original languageEnglish
Article number141
JournalRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas
Volume114
Issue number3
DOIs
Publication statusPublished - 1 Jul 2020
Externally publishedYes

Keywords

  • Cauchy–Riemann
  • Parameter dependence
  • Smooth
  • Solvability
  • Vector-valued
  • Weight

Fingerprint

Dive into the research topics of 'Parameter dependence of solutions of the Cauchy–Riemann equation on weighted spaces of smooth functions'. Together they form a unique fingerprint.

Cite this