Abstract
Heat transfer characteristics of copper sintered heat pipe explored using a modified graphene nanoplatelets (GNP)-containing nanofluid with great dispersion stability as a novel working fluid. Firstly, a water dispersible GNP with specific desire was synthesized by the reaction of GNP sheets with the diazonium salt (DS) of sodium 4-aminoazobenzene-4-sulfonate. An X-ray photoelectron spectroscopy (XPS) test shown successful covalent functionalization of GNP using DS which provided special water dispersibility characteristics. The results indicate that the thermal conductivity enhancement was up to 17% by adding modified GNP sheets in the base fluid. It also, exhibited a maximum sedimentation of 16% after 840 hrs. Further research works were carried on thermal performance of heat pipe by varying nanofluid concentrations, filling ratio, input heating powers and inclination angles of heat pipes. The results proof that the maximum enhancements of the effective thermal conductivity and reduction in thermal resistance for purposed nanofluid atφ = 5% were 105% and 26.4%, respectively. Moreover, these good features of the GNP/DS nanofluid make it a very promising working fluid to enhance the thermal performance and efficiency of the current heat pipe systems.
Original language | English |
---|---|
Article number | 115385 |
Journal | Applied thermal engineering |
Volume | 175 |
Early online date | 21 Apr 2020 |
DOIs | |
Publication status | Published - 5 Jul 2020 |
Keywords
- UT-Hybrid-D
- Heat pipe
- Thermal efficiency
- Thermal properties
- Heat transfer coefficient
- Filling ratio
- Graphene nanofluid