Perceptual speed and psychomotor ability predict laparoscopic skill acquisition on a simulator

Research output: Contribution to journalArticleAcademicpeer-review

11 Citations (Scopus)

Abstract


Objective

Performing minimally invasive surgery puts high demands on a surgeon’s cognitive and psychomotor abilities. Assessment of these abilities can be used to predict a surgeon’s learning curve, to create individualized training programs, and ultimately in selection programs for surgical training. The aim of this study was to examine the influence of cognitive and psychomotor ability on the training duration and learning rate.


Design

A prospective quasiexperimental field study regarding the influence of cognitive and psychomotor ability, baseline measures of time to complete task, damage to tissue, and efficiency of movement, age, and gender on the number of sessions needed to reach a predefined performance level on a laparoscopy simulator. The same variables were investigated as predictors of the learning rate.


Setting

The study was performed at the Experimental Center for Technical Medicine at the University of Twente, The Netherlands.


Participants

In all, 98 novices from the Master program of Technical Medicine followed a proficiency-based basic laparoscopic skills training.


Results

Perceptual speed (PS) predicted training duration (hazard ratio = 1.578; 95% CI = 1.084, 2.300; p = 0.017). Cognitive (b = −0.721, p = 0.014) and psychomotor ability (b = 0.182, p = 0.009) predicted the learning rate of time to complete the task. Also, the learning rate for participants with higher levels of PS was lower (b = 0.167, p = 0.036). Psychomotor ability also predicted the learning rate for damage to tissue (b = 0.194, p = 0.015) and efficiency of movement (b = 0.229, p = 0.004). Participants with better psychomotor ability outperformed other participants across all sessions on all outcome measures.


Conclusions

PS predicted training duration in a basic laparoscopic skills training and the learning rate for the time to complete the task. Psychomotor ability predicted the learning rate for laparoscopic skill acquisition in terms of time to complete task, damage to tissue, and efficiency of movements. These results indicate early automation of basic laparoscopic skill. Careful selection of the cognitive abilities tests is advised for use in training programs and to identify individuals who need more training.
Original languageEnglish
Pages (from-to)1224-1232
JournalJournal of surgical education
Volume72
Issue number6
DOIs
Publication statusPublished - 2015

Fingerprint Dive into the research topics of 'Perceptual speed and psychomotor ability predict laparoscopic skill acquisition on a simulator'. Together they form a unique fingerprint.

Cite this