Performance of Digital PET Compared with High-Resolution Conventional PET in Patients with Cancer

Daniëlle Koopman, Jorn A. van Dalen, Henk Stevens, Cornelis H. Slump, Siert Knollema, Pieter L. Jager

Research output: Contribution to journalArticleAcademicpeer-review

21 Citations (Scopus)
3 Downloads (Pure)


Recently introduced PET systems using silicon photomultipliers with digital readout (dPET) have an improved timing and spatial resolution, aiming at a better image quality than conventional PET (cPET) systems. We prospectively evaluated the performance of a dPET system in patients with cancer, as compared with high-resolution (HR) cPET imaging. Methods: After a single 18F-FDG injection, 66 patients underwent dPET and cPET imaging in randomized order. We used HR reconstructions (2 × 2 × 2 mm voxels) for both scanners and determined SUVmax, SUVmean, lesion-to-background ratio (LBR), metabolic tumor volume (MTV), and lesion diameter in up to 5 18F-FDG-positive lesions per patient. Furthermore, we counted the number of visible and measurable lesions on each PET scan. Two nuclear medicine specialists determined, in a masked manner, the TNM score from both image sets in 30 patients referred for initial staging. For all 66 patients, these specialists separately evaluated image quality (4-point scale) and determined the scan preference. Results: We included 238 lesions that were visible and measurable on both PET scans. For 27 patients, we found 37 additional lesions on dPET (41%) that were unmeasurable (n = 14) or invisible (n = 23) on cPET. Mean (±SD) SUVmean, SUVmax, LBR, and MTV on cPET were 5.2 ± 3.9, 6.9 ± 5.6, 5.0 ± 3.6, and 2,991 ± 13,251 mm3, respectively. On dPET, SUVmean, SUVmax, and LBR increased by 24%, 23%, and 27%, respectively (P < 0.001) whereas MTV decreased by 13% (P < 0.001), compared with cPET. Visual analysis showed TNM upstaging with dPET in 13% of the patients (4/30). dPET images also had higher scores for quality (P = 0.003) and were visually preferred in most cases (65%). Conclusion: dPET improved the detection of small lesions, upstaged the disease, and produced images that were visually preferred to those from HR cPET. More studies are necessary to confirm the superior diagnostic performance of dPET.Keywords: digital PET; conventional PET; FDG PET; lesion detection; cancer imaging.

Original languageEnglish
Pages (from-to)1448-1454
Number of pages7
JournalThe Journal of nuclear medicine
Issue number10
Publication statusPublished - 1 Oct 2020


  • 22/2 OA procedure


Dive into the research topics of 'Performance of Digital PET Compared with High-Resolution Conventional PET in Patients with Cancer'. Together they form a unique fingerprint.

Cite this