Abstract
Brush-modified silica hybrids have been synthesized by growing poly(2-(diethylamino)ethyl methacrylate) (poly(DEA)) brushes on 120 nm diameter silica particles by surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP). This is the first report of using SI-ARGET ATRP to synthesize poly(DEA) brushes. The kinetics of poly(DEA) brush growth in 4:1 v/v ethanol/water was monitored. The hydrodynamic diameter of the resulting brush-modified particles was dependent on the solution pH due to the weak polybasic nature of the brushes. Below the pKa of poly(DEA), the hydrodynamic diameter of the brush-modified particles increased with decreasing pH as a consequence of brush protonation, rearrangement and solvent uptake. This pH-response of the brushes was reversible and the hybrid particles exhibited significant hydrodynamic volume changes of up to 200% when the solution pH was cycled from pH 7 to pH 4. (Chemical Equation Presented).
Original language | English |
---|---|
Pages (from-to) | 1161-1165 |
Number of pages | 5 |
Journal | ACS macro letters |
Volume | 1 |
Issue number | 10 |
DOIs | |
Publication status | Published - 16 Oct 2012 |
Externally published | Yes |