Phase diagram for droplet impact on superheated surfaces

Erik-Jan Staat, Tuan Tran, B.M. Geerdink, G. Riboux, Chao Sun, J.M. Gordillo, Detlef Lohse

Research output: Contribution to journalArticleAcademicpeer-review

39 Citations (Scopus)

Abstract

We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number We versus surface temperature T. We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasing We, and the one towards the Leidenfrost state (no contact between the droplet and the plate due to a lasting vapour film) with increasing T. Consequently, there are four regimes: contact and no splashing (deposition regime), contact and splashing (contact–splash regime), neither contact nor splashing (bounce regime), and finally no contact, but splashing (film–splash regime). While the transition temperature TL to the Leidenfrost state depends weakly, at most, on We in the parameter regime of the present study, the transition Weber number WeC towards splashing shows a strong dependence on T and a discontinuity at TL. We quantitatively explain the splashing transition for T<TL by incorporating the temperature dependence of the physical properties in the theory by Riboux & Gordillo (Phys. Rev. Lett., vol. 113(2), 2014, 024507; J. Fluid Mech., vol. 772, 2015, pp. 630–648).
Original languageEnglish
Pages (from-to)R3-1-R3-11
Number of pages12
JournalJournal of fluid mechanics
Volume779
DOIs
Publication statusPublished - 2015

    Fingerprint

Keywords

  • METIS-311212
  • IR-97482

Cite this

Staat, E-J., Tran, T., Geerdink, B. M., Riboux, G., Sun, C., Gordillo, J. M., & Lohse, D. (2015). Phase diagram for droplet impact on superheated surfaces. Journal of fluid mechanics, 779, R3-1-R3-11. https://doi.org/10.1017/jfm.2015.465