TY - JOUR
T1 - Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerol‐Modified Nanocarriers
AU - Danner, Ann‐Kathrin
AU - Schöttler, Susanne
AU - Alexandrino, Evandro
AU - Hammer, Sophie
AU - Landfester, Katharina
AU - Mailänder, Volker
AU - Morsbach, Svenja
AU - Frey, Holger
AU - Wurm, Frederik R.
PY - 2019/5/26
Y1 - 2019/5/26
N2 - Nanocarriers are a platform for modern drug delivery. In contact with blood, proteins adsorb to nanocarriers, altering their behavior in vivo. To reduce unspecific protein adsorption and unspecific cellular uptake, nanocarriers are modified with hydrophilic polymers like poly(ethylene glycol) (PEG). However, with PEG the attachment of further functional structures such as targeting units is limited. A method to introduce multifunctionality via polyglycerol (PG) while maintaining the hydrophilicity of PEG is introduced. Different amounts of negatively charged phosphonate groups (up to 29 mol%) are attached to the multifunctional PGs (M n 2–4 kg mol−1, Ð < 1.36) by post‐modification. PGs are used in the miniemulsion/solvent evaporation procedure to prepare model nanocarriers. Their behavior in human blood plasma is investigated to determine the influence of the negative charges on the protein adsorption. The protein corona of PGylated nanocarriers is similar to PEGylated analogs (on same nanocarriers), but the protein pattern could be gradually altered by the integration of phosphonates. This is the first report on the gradual increase of negative charges on nanocarriers and intriguingly up to a certain amount of phosphonate groups per nanocarrier the protein pattern remains relatively unchanged, which is important for the future design of nanocarriers.
AB - Nanocarriers are a platform for modern drug delivery. In contact with blood, proteins adsorb to nanocarriers, altering their behavior in vivo. To reduce unspecific protein adsorption and unspecific cellular uptake, nanocarriers are modified with hydrophilic polymers like poly(ethylene glycol) (PEG). However, with PEG the attachment of further functional structures such as targeting units is limited. A method to introduce multifunctionality via polyglycerol (PG) while maintaining the hydrophilicity of PEG is introduced. Different amounts of negatively charged phosphonate groups (up to 29 mol%) are attached to the multifunctional PGs (M n 2–4 kg mol−1, Ð < 1.36) by post‐modification. PGs are used in the miniemulsion/solvent evaporation procedure to prepare model nanocarriers. Their behavior in human blood plasma is investigated to determine the influence of the negative charges on the protein adsorption. The protein corona of PGylated nanocarriers is similar to PEGylated analogs (on same nanocarriers), but the protein pattern could be gradually altered by the integration of phosphonates. This is the first report on the gradual increase of negative charges on nanocarriers and intriguingly up to a certain amount of phosphonate groups per nanocarrier the protein pattern remains relatively unchanged, which is important for the future design of nanocarriers.
UR - https://doi.org/10.1002/mabi.201800468
U2 - 10.1002/mabi.201800468
DO - 10.1002/mabi.201800468
M3 - Article
SN - 1616-5187
VL - 19
JO - Macromolecular bioscience
JF - Macromolecular bioscience
IS - 5
M1 - 1800468
ER -