Picosecond pulsed laser ablation of liquid covered stainless steel: Effect of liquid layer thickness on ablation efficiency

Sietse van der Linden*, Rob Hagmeijer, Gert Willem Römer

*Corresponding author for this work

    Research output: Contribution to journalArticleAcademicpeer-review

    3 Citations (Scopus)
    131 Downloads (Pure)

    Abstract

    Under liquid laser ablation is a material removal technique in which a focused laser beam passes through a liquid layer on top of the surface of a sample to be processed. When compared to laser ablation without a liquid layer, material (re)deposition around ablated regions is decreased. In addition, the ablation efficiency of the process, in terms of the amount of material removed per pulse, can be optimized by careful variation of the height of the liquid layer: a liquid layer height variation as small as a few tenth of millimeters already has a measurable effect on the amount of ablated material. In studies reported in existing literature, the required liquid layer height is typically realized by pouring a pre-defined amount of liquid on top of the sample surface. Surface tension, however, causes the air-liquid interface at the boundaries of the domain to deviate from the planar interface away from the boundaries, which affects the accuracy with which the liquid layer height can be determined. To the best of our knowledge, these accuracy issues have not been studied in previous research. Therefore, an experimental setup is proposed which circumvents the issues of a curved free surface. Next, a 7 picosecond pulsed laser source (M2 ≤1.3) at a wavelength of 515nmwas employed at a repetition rate of 1 kHz to study the efficiency of laser ablation of stainless steel for a range of liquid layer heights. Our findings provide a more detailed quantification of crater depth as a function of liquid layer height than is available through existing literature.

    Original languageEnglish
    Pages (from-to)108-119
    Number of pages12
    JournalJournal of laser micro nanoengineering
    Volume14
    Issue number1
    DOIs
    Publication statusPublished - 1 Apr 2019

    Keywords

    • Ablation
    • Distilled water
    • Laser
    • Liquid
    • Picosecond
    • Stainless steel

    Fingerprint

    Dive into the research topics of 'Picosecond pulsed laser ablation of liquid covered stainless steel: Effect of liquid layer thickness on ablation efficiency'. Together they form a unique fingerprint.

    Cite this