TY - JOUR
T1 - Polarization-Sensitive Resonance CSRS of Deoxy- and Oxyhaemoglobin
AU - Voroshilov, Artemy
AU - Lucassen, Gerald W.
AU - Otto, Cees
AU - Greve, Jan
PY - 1995
Y1 - 1995
N2 - Polarization-sensitive coherent Stokes Raman scattering (CSRS) measurements of oxy- and deoxyhaemoglobin in aqueous solutions are reported. The excitation wavelengths used were chosen in the region of the Q absorption bands to achieve twofold electronic resonance. The dispersion profiles of all independent susceptibility (3) components and purely anisotropic and anti-symmetric scattering contributions were resolved within the frequency non-degenerate CSRS scheme. Eight bands of oxyhaemoglobin and five bands of deoxyhaemoglobin were observed in the range 1500-1680 cm-1. Simultaneously fitting sets of polarization spectra provided vibrational parameters (positions, bandwidths, amplitudes, phases and CSRS depolarization ratios) for each compound. Major bands were assigned to the non-totally symmetric v10, v11 and v19 modes of the porphyrin macrocycle. The phases calculated exhibited a correlation with the symmetry of the vibrations. On the basis of the spectral fits, the three additional peaks arising in the oxyhaemoglobin spectra could be ascribed to the bands of intermediate deoxyhaemoglobin. The occurrence is due to the partial photolysis of oxyhaemoglobin. Vibrational parameters of these bands were found to be essentially similar to the parameters of the bands observed in the spectra of the stable deoxyhaemoglobin. Despite the asymmetric character predicted, the major bands were all contributed to by a considerable isotropic component. A decrease in the depolarization ratio PR1212 of the anomalously polarized v19 mode from 7.7 in oxyhaemoglobin to 4.3 in deoxyhaemoglobin was observed. Such a decrease in anti-symmetric character of the vibration on release of the ligand supports the occurrence of deformation of the haem ring system.
AB - Polarization-sensitive coherent Stokes Raman scattering (CSRS) measurements of oxy- and deoxyhaemoglobin in aqueous solutions are reported. The excitation wavelengths used were chosen in the region of the Q absorption bands to achieve twofold electronic resonance. The dispersion profiles of all independent susceptibility (3) components and purely anisotropic and anti-symmetric scattering contributions were resolved within the frequency non-degenerate CSRS scheme. Eight bands of oxyhaemoglobin and five bands of deoxyhaemoglobin were observed in the range 1500-1680 cm-1. Simultaneously fitting sets of polarization spectra provided vibrational parameters (positions, bandwidths, amplitudes, phases and CSRS depolarization ratios) for each compound. Major bands were assigned to the non-totally symmetric v10, v11 and v19 modes of the porphyrin macrocycle. The phases calculated exhibited a correlation with the symmetry of the vibrations. On the basis of the spectral fits, the three additional peaks arising in the oxyhaemoglobin spectra could be ascribed to the bands of intermediate deoxyhaemoglobin. The occurrence is due to the partial photolysis of oxyhaemoglobin. Vibrational parameters of these bands were found to be essentially similar to the parameters of the bands observed in the spectra of the stable deoxyhaemoglobin. Despite the asymmetric character predicted, the major bands were all contributed to by a considerable isotropic component. A decrease in the depolarization ratio PR1212 of the anomalously polarized v19 mode from 7.7 in oxyhaemoglobin to 4.3 in deoxyhaemoglobin was observed. Such a decrease in anti-symmetric character of the vibration on release of the ligand supports the occurrence of deformation of the haem ring system.
U2 - 10.1002/jrs.1250260608
DO - 10.1002/jrs.1250260608
M3 - Article
VL - 26
SP - 443
EP - 450
JO - Journal of raman spectroscopy
JF - Journal of raman spectroscopy
SN - 0377-0486
ER -