Abstract
The first results obtained with a new stand-alone atomic force microscope (AFM) integrated with a standard Zeiss optical fluorescence microscope are presented. The optical microscope allows location and selection of objects to be imaged with the high-resolution AFM. Furthermore, the combined microscope enables a direct comparison between features observed in the fluorescence microscope and those observed in the images obtained with the AFM, in air or under liquid. The cracks in polymerized Langmuir-Blodgett films of lO,l2-pentacosadiynoic acid as observed in the fluorescence microscope run parallel to one of the lattice directions of the crystal as revealed by molecular resolution images obtained with the AFM. The orientation of these cracks also coincides with the polarization direction of the fluorescent light, indicating that the cracks run along the polymer backbone. Ripple-like corrugations on a submicrometer scale have been observed, which may be due to mechanical stress created during the polymerization process.
Original language | English |
---|---|
Pages (from-to) | 3014-3019 |
Number of pages | 5 |
Journal | Langmuir |
Volume | 8 |
Issue number | 12 |
DOIs | |
Publication status | Published - 1992 |