Abstract
Poly (D,L-lactide)-7co-(1,3-trimethylene carbonate) [P(DLLA-co-TMC)] (83 mol % DLLA) was used to produce matrices suitable for tissue engineering of small-diameter blood vessels. The copolymer was processed into tubular structures with a porosity of 98% by melt spinning and fiber winding, thus obviating the need of organic solvents that may compromise subsequent cell culture. Unexpectedly, incubation in culture medium at 37°C resulted in disconnection of the contact points between the polymer fibers. To improve the structural stability of these P(DLLA-co-TMC) scaffolds, a collagen microsponge was formed inside the pores of the synthetic matrix by dip coating and freeze drying. Hybrid structures with a porosity of 97% and an average pore size of 102 m were obtained. Structural stability was preserved during incubation in culture medium at 37°C. Smooth-muscle cells (SMCs) were seeded in these hybrid scaffolds and cultured under pulsatile flow conditions in a bioreactor (120 beats/min, 80-120 mmHg). After 7 days of culture in a dynamic environment viable SMCs were homogeneously distributed throughout the constructs, which were five times stronger and stiffer than noncultured scaffolds. Values for yield stress (2.8 ± 0.6 MPa), stiffness (1.6 ± 0.4 MPa), and yield strain (120% ± 20%) were comparable to those of the human artery mesenterica.
Original language | English |
---|---|
Pages (from-to) | 425-434 |
Journal | Journal of Biomedical Materials Research. Part B: Applied Biomaterials |
Volume | 79B |
Issue number | 2 |
DOIs | |
Publication status | Published - 2006 |
Keywords
- Tissue Engineering
- lactate
- melt spinning
- trimethylene carbonate
- METIS-236835
- IR-67196
- Collagen