TY - JOUR
T1 - Positioning and stiffening of an articulated/continuum manipulator for implant delivery in minimally invasive surgery
AU - Tamadon, Izadyar
AU - Huan, Yu
AU - de Groot, Antonius G.
AU - Menciassi, Arianna
AU - Sinibaldi, Edoardo
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Background: Hollow, bendable manipulators can advance implant delivery in minimally invasive surgery, by circumventing the drawbacks of straight-line delivery and fostering single-port approaches. Variable stiffness manipulators are sought to be safe and effective. Methods: We designed and experimentally assessed a cable-driven articulated/continuum manipulator, devised for cardiac valve delivery. Positioning and stiffening were teleoperated, based on cable shortening. Stiffening was parameterized by using the leading tension (LT, ie, tension of the cables driving bending). We assessed positioning (repeatability/reversibility along eight/two bending directions) and stiffening (eight bent configurations). Results: We achieved good repeatability and reversibility (mean errors <1% and 1.5%, respectively, of the workspace characteristic length). Stiffening was effective (up to 9-fold increase, depending on pose). Stiffening was linearly correlated (R2 = 0.92) with LT for all the considered configurations. Conclusion: We accurately positioned and effectively stiffened the manipulator in several bent configurations. The proposed stiffness modulation strategy can be extended to other manipulators.
AB - Background: Hollow, bendable manipulators can advance implant delivery in minimally invasive surgery, by circumventing the drawbacks of straight-line delivery and fostering single-port approaches. Variable stiffness manipulators are sought to be safe and effective. Methods: We designed and experimentally assessed a cable-driven articulated/continuum manipulator, devised for cardiac valve delivery. Positioning and stiffening were teleoperated, based on cable shortening. Stiffening was parameterized by using the leading tension (LT, ie, tension of the cables driving bending). We assessed positioning (repeatability/reversibility along eight/two bending directions) and stiffening (eight bent configurations). Results: We achieved good repeatability and reversibility (mean errors <1% and 1.5%, respectively, of the workspace characteristic length). Stiffening was effective (up to 9-fold increase, depending on pose). Stiffening was linearly correlated (R2 = 0.92) with LT for all the considered configurations. Conclusion: We accurately positioned and effectively stiffened the manipulator in several bent configurations. The proposed stiffness modulation strategy can be extended to other manipulators.
KW - 22/2 OA procedure
UR - http://www.scopus.com/inward/record.url?scp=85078935348&partnerID=8YFLogxK
U2 - 10.1002/rcs.2072
DO - 10.1002/rcs.2072
M3 - Article
C2 - 31876096
AN - SCOPUS:85078935348
SN - 1478-5951
VL - 16
JO - International journal of medical robotics and computer assisted surgery
JF - International journal of medical robotics and computer assisted surgery
IS - 2
M1 - e2072
ER -