Post-Disaster Building Damage Detection from Earth Observation Imagery using Unsupervised and Transferable Anomaly Detecting Generative Adversarial Networks

S. Tilon*, F. Nex, N. Kerle, G. Vosselman

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We present an unsupervised deep learning approach for post-disaster building damage detection that can transfer to different typologies of damage or geographical locations. Previous advances in this direction were limited by insufficient qualitative training data. We propose to use a state-of-the-art Anomaly Detecting Generative Adversarial Network (ADGAN) because it only requires pre-event imagery of buildings in their undamaged state. This approach aids the post-disaster response phase because the model can be developed in the pre-event phase and rapidly deployed in the post-event phase. We used the xBD dataset, containing pre-and post-event satellite imagery of several disaster-types, and a custom made Unmanned Aerial Vehicle (UAV) dataset, containing post-earthquake imagery. Results showed that models trained on UAV-imagery were capable of detecting earthquake-induced damage. The best performing model for European locations obtained a recall, precision and F1-score of 0.59, 0.97 and 0.74, respectively. Models trained on satellite imagery were capable of detecting damage on the condition that the training dataset was void of vegetation and shadows. In this manner, the best performing model for (wild)fire events yielded a recall, precision and F1-score of 0.78, 0.99 and 0.87, respectively. Compared to other supervised and/or multi-epoch approaches, our results are encouraging. Moreover, in addition to image classifications, we show how contextual information can be used to create detailed damage maps without the need of a dedicated multi-task deep learning framework. Finally, we formulate practical guidelines to apply this single-epoch and unsupervised method to real-world applications.

Original languageEnglish
Article number4193
Pages (from-to)1-27
Number of pages27
JournalRemote sensing
Volume12
Issue number24
DOIs
Publication statusPublished - 21 Dec 2020

Keywords

  • ITC-ISI-JOURNAL-ARTICLE
  • ITC-GOLD

Fingerprint Dive into the research topics of 'Post-Disaster Building Damage Detection from Earth Observation Imagery using Unsupervised and Transferable Anomaly Detecting Generative Adversarial Networks'. Together they form a unique fingerprint.

Cite this