Post-Structuring Radiology Reports of Breast Cancer Patients for Clinical Quality Assurance

Shreyasi Pathak, Jorit van Rossen, Onno Vijlbrief, Jeroen Geerdink, Christin Seifert, Maurice van Keulen

    Research output: Contribution to journalArticleAcademicpeer-review

    27 Downloads (Pure)

    Abstract

    Hospitals often set protocols based on well defined standards to maintain the quality of patient reports. To ensure that the clinicians conform to the protocols, quality assurance of these reports is needed. Patient reports are currently written in free-text format, which complicates the task of quality assurance. In this paper, we present a machine learning based natural language processing system for automatic quality assurance of radiology reports on breast cancer. This is achieved in three steps: we i) identify the top-level structure (headings) of the report, ii) classify the report content into the top-level headings, iii) convert the free-text detailed findings in the report to a semi-structured format (post-structuring). Top level structure and content of report were predicted with an F1 score of 0.97 and 0.94, respectively using Support Vector Machine (SVM) classifiers. For automatic structuring, our proposed hierarchical Conditional Random Field (CRF) outperformed the baseline CRF with an F1 score of 0.78 vs 0.71. The determined structure of the report is represented in semi-structured XML format of the free-text report, which helps to easily visualize the conformance of the findings to the protocols. This format also allows easy extraction of specific information for other purposes such as search, evaluation and research.
    Original languageEnglish
    JournalIEEE/ACM Transactions on Computational Biology and Bioinformatics
    DOIs
    Publication statusE-pub ahead of print/First online - 3 May 2019

      Fingerprint

    Cite this