Abstract
We found that continuous films of gold (Au) on oxidized silicon (SiO2) substrates, upon treatment with ultraviolet (UV)-ozone, exhibit strong adhesion to the SiO2 support. Importantly, the enhancement is independent of micro- or nanostructuring of such nanometer-thick films. Deposition of a second Au layer on top of the pretreated Au layer makes the adhesion stable for at least 5 months in environmental air. Using this treatment method enables us to large-scale fabricate various SiO2-supported Au structures at various thicknesses with dimensions spanning from a few hundreds of nanometers to a few micrometers, without the use of additional adhesion layers. We explain the observed adhesion improvement as polarization-induced increased strength of Auδ-Siδ+ bonds at the Au-SiO2 interface due to the formation of a gold oxide monolayer on the Au surface by the UV-ozone treatment. Our simple and enabling method thus provides opportunities for patterning Au micro/nanostructures on SiO2 substrates without an intermediate metallic adhesion layer, which is critical for biosensing and nanophotonic applications.
Original language | English |
---|---|
Pages (from-to) | 6782-6789 |
Number of pages | 8 |
Journal | ACS nano |
Volume | 13 |
DOIs | |
Publication status | Published - 12 Jun 2019 |
Keywords
- adhesion enhancement
- gold oxide
- gold thin films
- oxidized silicon substrates
- UV-ozone treatment