### Abstract

Original language | Undefined |
---|---|

Title of host publication | Advances in Turbulence XII |

Editors | Bruno Eckhardt |

Place of Publication | Heidelberg, Germany |

Publisher | Springer |

Pages | - |

ISBN (Print) | 978-3-642-03084-0 |

DOIs | |

Publication status | Published - 7 Sep 2009 |

Event | 12th EUROMECH European Turbulence Conference, ETC 2009 - Marburg, Germany Duration: 7 Sep 2009 → 10 Sep 2009 Conference number: 12 |

### Publication series

Name | Springer proceedings in physics |
---|---|

Publisher | Springer |

Number | 8 |

Volume | 132 |

### Conference

Conference | 12th EUROMECH European Turbulence Conference, ETC 2009 |
---|---|

Abbreviated title | ETC |

Country | Germany |

City | Marburg |

Period | 7/09/09 → 10/09/09 |

### Keywords

- METIS-262870
- IR-79684

### Cite this

*Advances in Turbulence XII*(pp. -). (Springer proceedings in physics; Vol. 132, No. 8). Heidelberg, Germany: Springer. https://doi.org/10.1007/978-3-642-03085-7_127

}

*Advances in Turbulence XII.*Springer proceedings in physics, no. 8, vol. 132, Springer, Heidelberg, Germany, pp. -, 12th EUROMECH European Turbulence Conference, ETC 2009, Marburg, Germany, 7/09/09. https://doi.org/10.1007/978-3-642-03085-7_127

**Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection.** / Stevens, Richard Johannes Antonius Maria; Zhong, Jin-Qiang; Clercx, H.J.H.; Verzicco, Roberto; Lohse, Detlef; Ahlers, Günter.

Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Academic › peer-review

TY - GEN

T1 - Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection

AU - Stevens, Richard Johannes Antonius Maria

AU - Zhong, Jin-Qiang

AU - Clercx, H.J.H.

AU - Verzicco, Roberto

AU - Lohse, Detlef

AU - Ahlers, Günter

PY - 2009/9/7

Y1 - 2009/9/7

N2 - For given aspect ratio and given geometry, the nature of Rayleigh Benard convection (RBC) is determined by the Rayleigh number Ra = bg DL3 / (kn)Ra=gL3() and by the Prandtl number Pr = n/ kPr= is the thermal expansion coefficient, g the gravitational acceleration D = Tb - Tt=Tb−Tt the difference between the imposed temperatures Tb and Tt at the bottom and the top of the sample, respectively, and v and k the kinematic viscosity and the thermal diffusivity, respectively. The rotation rate Ω (given in rad/s) is used in the form of the Rossby number Ro = Ö{bg D/ L / (2 W)}Ro=gL(2)

AB - For given aspect ratio and given geometry, the nature of Rayleigh Benard convection (RBC) is determined by the Rayleigh number Ra = bg DL3 / (kn)Ra=gL3() and by the Prandtl number Pr = n/ kPr= is the thermal expansion coefficient, g the gravitational acceleration D = Tb - Tt=Tb−Tt the difference between the imposed temperatures Tb and Tt at the bottom and the top of the sample, respectively, and v and k the kinematic viscosity and the thermal diffusivity, respectively. The rotation rate Ω (given in rad/s) is used in the form of the Rossby number Ro = Ö{bg D/ L / (2 W)}Ro=gL(2)

KW - METIS-262870

KW - IR-79684

U2 - 10.1007/978-3-642-03085-7_127

DO - 10.1007/978-3-642-03085-7_127

M3 - Conference contribution

SN - 978-3-642-03084-0

T3 - Springer proceedings in physics

SP - -

BT - Advances in Turbulence XII

A2 - Eckhardt, Bruno

PB - Springer

CY - Heidelberg, Germany

ER -