Abstract
The efficiency of solar thermochemical cycles to split water and carbon dioxide depends in large part on highly effective gas phase heat recovery. Heat recovery is imperative for approaches that rely on an inert sweep gas to reach low partial pressures of oxygen during thermal reduction and/or use excess oxidizer to provide a higher thermodynamic driving potential for fuel production. In this paper, we analyze heat transfer and pressure drop of a tube-in-tube ceramic heat exchanger for the operating conditions expected in a prototype solar reactor for isothermal cycling of ceria. The ceramic tubes are filled with reticulated porous ceramic (RPC). The impacts of the selection of the composition and morphology of the RPC on heat transfer and pressure drop are explored via computational analysis. Results indicate a 10 pore per inch (ppi), 80-85% porous alumina RPC yields effectiveness from 85 to 90 percent.
Original language | English |
---|---|
Title of host publication | ASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology |
Publisher | American Society of Mechanical Engineers |
ISBN (Electronic) | 9780791845868 |
DOIs | |
Publication status | Published - 2014 |
Externally published | Yes |
Event | ASME 2014 8th International Conference on Energy Sustainability, ES 2014 - Boston, United States Duration: 30 Jun 2014 → 2 Jul 2014 Conference number: 8 |
Conference
Conference | ASME 2014 8th International Conference on Energy Sustainability, ES 2014 |
---|---|
Abbreviated title | ES 2014 |
Country/Territory | United States |
City | Boston |
Period | 30/06/14 → 2/07/14 |
Other | Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology |