Predicting sex from brain rhythms with deep learning

Michel J.A.M. Van Putten*, Sebastian Olbrich, Martijn Arns

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

45 Citations (Scopus)
1 Downloads (Pure)

Abstract

We have excellent skills to extract sex from visual assessment of human faces, but assessing sex from human brain rhythms seems impossible. Using deep convolutional neural networks, with unique potential to find subtle differences in apparent similar patterns, we explore if brain rhythms from either sex contain sex specific information. Here we show, in a ground truth scenario, that a deep neural net can predict sex from scalp electroencephalograms with an accuracy of >80% (p < 10 -5 ), revealing that brain rhythms are sex specific. Further, we extracted sex-specific features from the deep net filter layers, showing that fast beta activity (20-25 Hz) and its spatial distribution is a main distinctive attribute. This demonstrates the ability of deep nets to detect features in spatiotemporal data unnoticed by visual assessment, and to assist in knowledge discovery. We anticipate that this approach may also be successfully applied to other specialties where spatiotemporal data is abundant, including neurology, cardiology and neuropsychology.

Original languageEnglish
Article number3069
JournalScientific reports
Volume8
Issue number1
DOIs
Publication statusPublished - 1 Dec 2018

Fingerprint

Dive into the research topics of 'Predicting sex from brain rhythms with deep learning'. Together they form a unique fingerprint.

Cite this