Prediction of All-Cause Mortality Following Percutaneous Coronary Intervention in Bifurcation Lesions Using Machine Learning Algorithms

Jacopo Burrello, Guglielmo Gallone, Alessio Burrello, Daniele Jahier Pagliari, Eline H. Ploumen, Mario Iannaccone, Leonardo De Luca, Paolo Zocca, Giuseppe Patti, Enrico Cerrato, Wojciech Wojakowski, Giuseppe Venuti, Ovidio De Filippo, Alessio Mattesini, Nicola Ryan, Gérard Helft, Saverio Muscoli, Jing Kan, Imad Sheiban, Radoslaw ParmaDaniela Trabattoni, Massimo Giammaria, Alessandra Truffa, Francesco Piroli, Yoichi Imori, Bernardo Cortese, Pierluigi Omedè, Federico Conrotto, Shao Liang Chen*, Javier Escaned, Rosaly A. Buiten, Clemens Von Birgelen, Paolo Mulatero, Gaetano Maria De Ferrari, Silvia Monticone, Fabrizio D’ascenzo

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

5 Citations (Scopus)
23 Downloads (Pure)

Fingerprint

Dive into the research topics of 'Prediction of All-Cause Mortality Following Percutaneous Coronary Intervention in Bifurcation Lesions Using Machine Learning Algorithms'. Together they form a unique fingerprint.

Medicine and Dentistry

Psychology

Pharmacology, Toxicology and Pharmaceutical Science

Neuroscience