Abstract
Recommender systems are widely used in online applications since they enable personalized service to the users. The underlying collaborative filtering techniques work on user’s data which are mostly privacy sensitive and can be misused by the service provider. To protect the privacy of the users, we propose to encrypt the privacy sensitive data and generate recommendations by processing them under encryption. With this approach, the service provider learns no information on any user’s preferences or the recommendations made. The proposed method is based on homomorphic encryption schemes and secure multiparty computation (MPC) techniques. The overhead of working in the encrypted domain is minimized by packing data as shown in the complexity analysis.
Original language | English |
---|---|
Pages | 35-42 |
Number of pages | 8 |
Publication status | Published - 2010 |
Event | 31st WIC Symposium on Information Theory in the Benelux 2010 - Rotterdam, Netherlands Duration: 11 May 2010 → 12 May 2010 Conference number: 31 |
Conference
Conference | 31st WIC Symposium on Information Theory in the Benelux 2010 |
---|---|
Country/Territory | Netherlands |
City | Rotterdam |
Period | 11/05/10 → 12/05/10 |