Probability of knots in a polymer ring

J.P.J. Michels, F.W. Wiegel

  • 68 Citations

Abstract

We generate equilibrium configurations of a ring polymer in an infinite space, or confined to the interior of a sphere. Using a new algorithm, the a priori probability for the occurence of a knot is determined numerically. The results are compatible with power laws and scaling laws of striking simplicity.
Original languageUndefined
Pages (from-to)381-384
JournalPhysics letters A
Volume90
Issue number7
DOIs
StatePublished - 1982

Fingerprint

Scaling laws
Polymers

Keywords

  • IR-68994

Cite this

Michels, J. P. J., & Wiegel, F. W. (1982). Probability of knots in a polymer ring. Physics letters A, 90(7), 381-384. DOI: 10.1016/0375-9601(82)90636-3

Michels, J.P.J.; Wiegel, F.W. / Probability of knots in a polymer ring.

In: Physics letters A, Vol. 90, No. 7, 1982, p. 381-384.

Research output: ScientificArticle

@article{098b627ef9624396872de5c403224510,
title = "Probability of knots in a polymer ring",
abstract = "We generate equilibrium configurations of a ring polymer in an infinite space, or confined to the interior of a sphere. Using a new algorithm, the a priori probability for the occurence of a knot is determined numerically. The results are compatible with power laws and scaling laws of striking simplicity.",
keywords = "IR-68994",
author = "J.P.J. Michels and F.W. Wiegel",
year = "1982",
doi = "10.1016/0375-9601(82)90636-3",
volume = "90",
pages = "381--384",
journal = "Physics letters A",
issn = "0375-9601",
publisher = "Elsevier",
number = "7",

}

Michels, JPJ & Wiegel, FW 1982, 'Probability of knots in a polymer ring' Physics letters A, vol 90, no. 7, pp. 381-384. DOI: 10.1016/0375-9601(82)90636-3

Probability of knots in a polymer ring. / Michels, J.P.J.; Wiegel, F.W.

In: Physics letters A, Vol. 90, No. 7, 1982, p. 381-384.

Research output: ScientificArticle

TY - JOUR

T1 - Probability of knots in a polymer ring

AU - Michels,J.P.J.

AU - Wiegel,F.W.

PY - 1982

Y1 - 1982

N2 - We generate equilibrium configurations of a ring polymer in an infinite space, or confined to the interior of a sphere. Using a new algorithm, the a priori probability for the occurence of a knot is determined numerically. The results are compatible with power laws and scaling laws of striking simplicity.

AB - We generate equilibrium configurations of a ring polymer in an infinite space, or confined to the interior of a sphere. Using a new algorithm, the a priori probability for the occurence of a knot is determined numerically. The results are compatible with power laws and scaling laws of striking simplicity.

KW - IR-68994

U2 - 10.1016/0375-9601(82)90636-3

DO - 10.1016/0375-9601(82)90636-3

M3 - Article

VL - 90

SP - 381

EP - 384

JO - Physics letters A

T2 - Physics letters A

JF - Physics letters A

SN - 0375-9601

IS - 7

ER -

Michels JPJ, Wiegel FW. Probability of knots in a polymer ring. Physics letters A. 1982;90(7):381-384. Available from, DOI: 10.1016/0375-9601(82)90636-3