Probing Magnetic Defects in Ultra-Scaled Nanowires with Optically Detected Spin Resonance in Nitrogen-Vacancy Center in Diamond

Umberto Celano*, Hai Zhong, Florin Ciubotaru, Laurentiu Stoleriu, Alexander Stark, Peter Rickhaus, Felipe Fávaro de Oliveira, Mathieu Munsch, Paola Favia, Maxim Korytov, Patricia Van Marcke, Patrick Maletinsky, Christoph Adelmann, Paul van der Heide

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

11 Citations (Scopus)
164 Downloads (Pure)

Abstract

Magnetic nanowires (NWs) are essential building blocks of spintronics devices as they offer tunable magnetic properties and anisotropy through their geometry. While the synthesis and compositional control of NWs have seen major improvements, considerable challenges remain for the characterization of local magnetic features at the nanoscale. Here, we demonstrate nonperturbative field distribution mapping in ultrascaled magnetic nanowires with diameters down to 6 nm by scanning nitrogen-vacancy magnetometry. This enables localized, minimally invasive magnetic imaging with sensitivity down to 3 μT Hz–1/2. The imaging reveals the presence of weak magnetic inhomogeneities inside in-plane magnetized nanowires that are largely undetectable with standard metrology and can be related to local fluctuations of the NWs’ saturation magnetization. In addition, the strong magnetic field confinement in the nanowires allows for the study of the interaction between the stray magnetic field and the nitrogen-vacancy sensor, thus clarifying the contrasting formation mechanisms for technologically relevant magnetic nanostructures.

Original languageEnglish
Pages (from-to)10409-10415
Number of pages7
JournalNano letters
Volume21
Issue number24
DOIs
Publication statusPublished - 9 Dec 2021

Keywords

  • 2022 OA procedure
  • Nitrogen-vacancy
  • scanning Nitrogen-vacancy magnetometry
  • SNVM
  • UT-Hybrid-D
  • magnetic nanowires

Fingerprint

Dive into the research topics of 'Probing Magnetic Defects in Ultra-Scaled Nanowires with Optically Detected Spin Resonance in Nitrogen-Vacancy Center in Diamond'. Together they form a unique fingerprint.

Cite this