Probing pairing symmetry in multi-band superconductors by quasiparticle interference

A. Dutt, A.A. Golubov, D.V. Efremov, O.V. Dolgov (Corresponding Author)

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
123 Downloads (Pure)


We study momentum and energy dependencies of the quasiparticle interference (QPI) response function in multiband superconductors in the framework of the strong-coupling Eliashberg approach. Within an effective two-band model we study the s± and s++ symmetry cases, corresponding to opposite or equal signs of the order parameters in the bands. We demonstrate that the momentum dependence of the QPI function is strikingly different for s± and s++ symmetries of the order parameter at energies close to the small gap. At the same time, the QPI response becomes indistinguishable for both symmetries at higher energies around the large gap. This result may guide future experiments on probing pairing symmetry in iron pnictides as well as in other unconventional superconductors.

Original languageEnglish
Article number11594
Number of pages9
JournalScientific reports
Issue number1
Publication statusPublished - 2 Aug 2018


Dive into the research topics of 'Probing pairing symmetry in multi-band superconductors by quasiparticle interference'. Together they form a unique fingerprint.

Cite this