Protein Cages as Containers for Gold Nanoparticles

Aijie Liu, M. Verwegen, Mark Vincent de Ruiter, Stan Joris Maassen, Christoph Traulsen, Jeroen Johannes Lambertus Maria Cornelissen

Research output: Contribution to journalArticleAcademicpeer-review

26 Citations (Scopus)

Abstract

Abundant and highly diverse, viruses offer new scaffolds in nanotechnology for the encapsulation, organization, or even synthesis of novel materials. In this work the coat protein of the cowpea chlorotic mottle virus (CCMV) is used to encapsulate gold nanoparticles with different sizes and stabilizing ligands yielding stable particles in buffered solutions at neutral pH. The sizes of the virus-like particles correspond to T = 1, 2, and 3 Caspar–Klug icosahedral triangulation numbers. We developed a simple one-step process enabling the encapsulation of commercially available gold nanoparticles without prior modification with up to 97% efficiency. The encapsulation efficiency is further increased using bis-p-(sufonatophenyl)phenyl phosphine surfactants up to 99%. Our work provides a simplified procedure for the preparation of metallic particles stabilized in CCMV protein cages. The presented results are expected to enable the preparation of a variety of similar virus-based colloids for current focus areas.
Original languageEnglish
Pages (from-to)6352-6357
Number of pages5
JournalJournal of physical chemistry B
Volume120
Issue number26
DOIs
Publication statusPublished - 2016

Keywords

  • IR-103883
  • METIS-320620

Fingerprint Dive into the research topics of 'Protein Cages as Containers for Gold Nanoparticles'. Together they form a unique fingerprint.

  • Cite this

    Liu, A., Verwegen, M., de Ruiter, M. V., Maassen, S. J., Traulsen, C., & Cornelissen, J. J. L. M. (2016). Protein Cages as Containers for Gold Nanoparticles. Journal of physical chemistry B, 120(26), 6352-6357. https://doi.org/10.1021/acs.jpcb.6b03066