TY - JOUR
T1 - Qualitative Evaluation of Common Quantitative Metrics for Clinical Acceptance of Automatic Segmentation
T2 - a Case Study on Heart Contouring from CT Images by Deep Learning Algorithms
AU - van den Oever, L. B.
AU - van Veldhuizen, W. A.
AU - Cornelissen, L. J.
AU - Spoor, D. S.
AU - Willems, T. P.
AU - Kramer, G.
AU - Stigter, T.
AU - Rook, M.
AU - Crijns, A. P.G.
AU - Oudkerk, M.
AU - Veldhuis, R. N.J.
AU - de Bock, G. H.
AU - van Ooijen, P. M.A.
N1 - Funding Information:
This research was supported by a grant from the koninklijke nederlandse akademie van wetenschappen (KNAW) received by G.H. de Bock (PSA SA BD 01).
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/4
Y1 - 2022/4
N2 - Organs-at-risk contouring is time consuming and labour intensive. Automation by deep learning algorithms would decrease the workload of radiotherapists and technicians considerably. However, the variety of metrics used for the evaluation of deep learning algorithms make the results of many papers difficult to interpret and compare. In this paper, a qualitative evaluation is done on five established metrics to assess whether their values correlate with clinical usability. A total of 377 CT volumes with heart delineations were randomly selected for training and evaluation. A deep learning algorithm was used to predict the contours of the heart. A total of 101 CT slices from the validation set with the predicted contours were shown to three experienced radiologists. They examined each slice independently whether they would accept or adjust the prediction and if there were (small) mistakes. For each slice, the scores of this qualitative evaluation were then compared with the Sørensen-Dice coefficient (DC), the Hausdorff distance (HD), pixel-wise accuracy, sensitivity and precision. The statistical analysis of the qualitative evaluation and metrics showed a significant correlation. Of the slices with a DC over 0.96 (N = 20) or a 95% HD under 5 voxels (N = 25), no slices were rejected by the readers. Contours with lower DC or higher HD were seen in both rejected and accepted contours. Qualitative evaluation shows that it is difficult to use common quantification metrics as indicator for use in clinic. We might need to change the reporting of quantitative metrics to better reflect clinical acceptance.
AB - Organs-at-risk contouring is time consuming and labour intensive. Automation by deep learning algorithms would decrease the workload of radiotherapists and technicians considerably. However, the variety of metrics used for the evaluation of deep learning algorithms make the results of many papers difficult to interpret and compare. In this paper, a qualitative evaluation is done on five established metrics to assess whether their values correlate with clinical usability. A total of 377 CT volumes with heart delineations were randomly selected for training and evaluation. A deep learning algorithm was used to predict the contours of the heart. A total of 101 CT slices from the validation set with the predicted contours were shown to three experienced radiologists. They examined each slice independently whether they would accept or adjust the prediction and if there were (small) mistakes. For each slice, the scores of this qualitative evaluation were then compared with the Sørensen-Dice coefficient (DC), the Hausdorff distance (HD), pixel-wise accuracy, sensitivity and precision. The statistical analysis of the qualitative evaluation and metrics showed a significant correlation. Of the slices with a DC over 0.96 (N = 20) or a 95% HD under 5 voxels (N = 25), no slices were rejected by the readers. Contours with lower DC or higher HD were seen in both rejected and accepted contours. Qualitative evaluation shows that it is difficult to use common quantification metrics as indicator for use in clinic. We might need to change the reporting of quantitative metrics to better reflect clinical acceptance.
KW - Automatic contouring
KW - CT
KW - Deep learning
KW - Qualitative assessment
KW - Turing test
UR - http://www.scopus.com/inward/record.url?scp=85123594710&partnerID=8YFLogxK
U2 - 10.1007/s10278-021-00573-9
DO - 10.1007/s10278-021-00573-9
M3 - Article
AN - SCOPUS:85123594710
SN - 0897-1889
VL - 35
SP - 240
EP - 247
JO - Journal of Digital Imaging
JF - Journal of Digital Imaging
IS - 2
ER -