TY - JOUR
T1 - Quantifying Organic Cation Ratios in Metal Halide Perovskites
T2 - Insights from X-ray Photoelectron Spectroscopy and Nuclear Magnetic Resonance Spectroscopy
AU - Soto-Montero, Tatiana
AU - Kralj, Suzana
AU - Gómez, Jennifer S.
AU - Wolffs, Jop W.
AU - Rodkey, Nathan
AU - Kentgens, Arno P.M.
AU - Morales-Masis, Monica
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/7/23
Y1 - 2024/7/23
N2 - The employment of metal halide perovskites (MHPs) in various optoelectronic applications requires the preparation of thin films whose composition plays a crucial role. Yet, the composition of the MHP films is rarely reported in the literature, partly because quantifying the actual organic cation composition cannot be done with conventional characterization methods. For MHPs, NMR has gained popularity, but for films, tedious processes like scratching several films are needed. Here, we use mechanochemical synthesis of MA1-xFAxPbI3 powders with various MA+: FA+ ratios and combine solid-state NMR spectroscopy (ssNMR) and X-ray photoelectron spectroscopy (XPS) to provide a reference characterization protocol for the organic cations’ quantification in either powder form or films. Following this, we demonstrate that organic cation ratio quantification on thin films with ssNMR can be done without scraping the film and using significantly less mass than typically needed, that is, employing a single ∼800 nm-thick MA1-xFAxPbI3 film deposited by pulsed laser deposition (PLD) onto a 1 × 1 in.2, 0.2 mm-thick quartz substrate. While background signals from the quartz substrate appear in the 1H ssNMR spectra, the MA+ and FA+ signals are easily distinguishable and can be quantified. This study highlights the importance of calibrating and quantifying the source and the thin film organic cation ratio, as key for future optimization and scalability of physical vapor deposition processes.
AB - The employment of metal halide perovskites (MHPs) in various optoelectronic applications requires the preparation of thin films whose composition plays a crucial role. Yet, the composition of the MHP films is rarely reported in the literature, partly because quantifying the actual organic cation composition cannot be done with conventional characterization methods. For MHPs, NMR has gained popularity, but for films, tedious processes like scratching several films are needed. Here, we use mechanochemical synthesis of MA1-xFAxPbI3 powders with various MA+: FA+ ratios and combine solid-state NMR spectroscopy (ssNMR) and X-ray photoelectron spectroscopy (XPS) to provide a reference characterization protocol for the organic cations’ quantification in either powder form or films. Following this, we demonstrate that organic cation ratio quantification on thin films with ssNMR can be done without scraping the film and using significantly less mass than typically needed, that is, employing a single ∼800 nm-thick MA1-xFAxPbI3 film deposited by pulsed laser deposition (PLD) onto a 1 × 1 in.2, 0.2 mm-thick quartz substrate. While background signals from the quartz substrate appear in the 1H ssNMR spectra, the MA+ and FA+ signals are easily distinguishable and can be quantified. This study highlights the importance of calibrating and quantifying the source and the thin film organic cation ratio, as key for future optimization and scalability of physical vapor deposition processes.
KW - UT-Hybrid-D
UR - http://www.scopus.com/inward/record.url?scp=85197819554&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.4c00935
DO - 10.1021/acs.chemmater.4c00935
M3 - Article
AN - SCOPUS:85197819554
SN - 0897-4756
VL - 36
SP - 6912
EP - 6924
JO - Chemistry of materials
JF - Chemistry of materials
IS - 14
ER -