TY - JOUR
T1 - Quantitative classification and radiomics of [18F]FDG-PET/CT in indeterminate thyroid nodules
AU - de Koster, Elizabeth J.
AU - Noortman, Wyanne A.
AU - Mostert, Jacob M.
AU - Booij, Jan
AU - Brouwer, Catherine B.
AU - de Keizer, Bart
AU - de Klerk, John M.H.
AU - Oyen, Wim J.G.
AU - van Velden, Floris H.P.
AU - de Geus-Oei, Lioe Fee
AU - Vriens, Dennis
AU - for the EfFECTS trial study group
N1 - Funding Information:
The EfFECTS trial was supported by a project grant from the Dutch Cancer Society (KUN 2014–6514).
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/6
Y1 - 2022/6
N2 - Purpose: To evaluate whether quantitative [18F]FDG-PET/CT assessment, including radiomic analysis of [18F]FDG-positive thyroid nodules, improved the preoperative differentiation of indeterminate thyroid nodules of non-Hürthle cell and Hürthle cell cytology. Methods: Prospectively included patients with a Bethesda III or IV thyroid nodule underwent [18F]FDG-PET/CT imaging. Receiver operating characteristic (ROC) curve analysis was performed for standardised uptake values (SUV) and SUV-ratios, including assessment of SUV cut-offs at which a malignant/borderline neoplasm was reliably ruled out (≥ 95% sensitivity). [18F]FDG-positive scans were included in radiomic analysis. After segmentation at 50% of SUVpeak, 107 radiomic features were extracted from [18F]FDG-PET and low-dose CT images. Elastic net regression classifiers were trained in a 20-times repeated random split. Dimensionality reduction was incorporated into the splits. Predictive performance of radiomics was presented as mean area under the ROC curve (AUC) across the test sets. Results: Of 123 included patients, 84 (68%) index nodules were visually [18F]FDG-positive. The malignant/borderline rate was 27% (33/123). SUV-metrices showed AUCs ranging from 0.705 (95% CI, 0.601–0.810) to 0.729 (0.633–0.824), 0.708 (0.580–0.835) to 0.757 (0.650–0.864), and 0.533 (0.320–0.747) to 0.700 (0.502–0.898) in all (n = 123), non-Hürthle (n = 94), and Hürthle cell (n = 29) nodules, respectively. At SUVmax, SUVpeak, SUVmax-ratio, and SUVpeak-ratio cut-offs of 2.1 g/mL, 1.6 g/mL, 1.2, and 0.9, respectively, sensitivity of [18F]FDG-PET/CT was 95.8% (95% CI, 78.9–99.9%) in non-Hürthle cell nodules. In Hürthle cell nodules, cut-offs of 5.2 g/mL, 4.7 g/mL, 3.4, and 2.8, respectively, resulted in 100% sensitivity (95% CI, 66.4–100%). Radiomic analysis of 84 (68%) [18F]FDG-positive nodules showed a mean test set AUC of 0.445 (95% CI, 0.290–0.600) for the PET model. Conclusion: Quantitative [18F]FDG-PET/CT assessment ruled out malignancy in indeterminate thyroid nodules. Distinctive, higher SUV cut-offs should be applied in Hürthle cell nodules to optimize rule-out ability. Radiomic analysis did not contribute to the additional differentiation of [18F]FDG-positive nodules. Trial registration number: This trial is registered with ClinicalTrials.gov: NCT02208544 (5 August 2014), https://clinicaltrials.gov/ct2/show/NCT02208544.
AB - Purpose: To evaluate whether quantitative [18F]FDG-PET/CT assessment, including radiomic analysis of [18F]FDG-positive thyroid nodules, improved the preoperative differentiation of indeterminate thyroid nodules of non-Hürthle cell and Hürthle cell cytology. Methods: Prospectively included patients with a Bethesda III or IV thyroid nodule underwent [18F]FDG-PET/CT imaging. Receiver operating characteristic (ROC) curve analysis was performed for standardised uptake values (SUV) and SUV-ratios, including assessment of SUV cut-offs at which a malignant/borderline neoplasm was reliably ruled out (≥ 95% sensitivity). [18F]FDG-positive scans were included in radiomic analysis. After segmentation at 50% of SUVpeak, 107 radiomic features were extracted from [18F]FDG-PET and low-dose CT images. Elastic net regression classifiers were trained in a 20-times repeated random split. Dimensionality reduction was incorporated into the splits. Predictive performance of radiomics was presented as mean area under the ROC curve (AUC) across the test sets. Results: Of 123 included patients, 84 (68%) index nodules were visually [18F]FDG-positive. The malignant/borderline rate was 27% (33/123). SUV-metrices showed AUCs ranging from 0.705 (95% CI, 0.601–0.810) to 0.729 (0.633–0.824), 0.708 (0.580–0.835) to 0.757 (0.650–0.864), and 0.533 (0.320–0.747) to 0.700 (0.502–0.898) in all (n = 123), non-Hürthle (n = 94), and Hürthle cell (n = 29) nodules, respectively. At SUVmax, SUVpeak, SUVmax-ratio, and SUVpeak-ratio cut-offs of 2.1 g/mL, 1.6 g/mL, 1.2, and 0.9, respectively, sensitivity of [18F]FDG-PET/CT was 95.8% (95% CI, 78.9–99.9%) in non-Hürthle cell nodules. In Hürthle cell nodules, cut-offs of 5.2 g/mL, 4.7 g/mL, 3.4, and 2.8, respectively, resulted in 100% sensitivity (95% CI, 66.4–100%). Radiomic analysis of 84 (68%) [18F]FDG-positive nodules showed a mean test set AUC of 0.445 (95% CI, 0.290–0.600) for the PET model. Conclusion: Quantitative [18F]FDG-PET/CT assessment ruled out malignancy in indeterminate thyroid nodules. Distinctive, higher SUV cut-offs should be applied in Hürthle cell nodules to optimize rule-out ability. Radiomic analysis did not contribute to the additional differentiation of [18F]FDG-positive nodules. Trial registration number: This trial is registered with ClinicalTrials.gov: NCT02208544 (5 August 2014), https://clinicaltrials.gov/ct2/show/NCT02208544.
KW - Indeterminate
KW - Quantitative
KW - Radiomics
KW - Standardised uptake value
KW - Thyroid carcinoma
KW - Thyroid cytology
KW - Thyroid nodule
KW - [F]FDG-PET/CT
UR - http://www.scopus.com/inward/record.url?scp=85125098869&partnerID=8YFLogxK
U2 - 10.1007/s00259-022-05712-0
DO - 10.1007/s00259-022-05712-0
M3 - Article
C2 - 35138444
AN - SCOPUS:85125098869
SN - 1619-7070
VL - 49
SP - 2174
EP - 2188
JO - European journal of nuclear medicine and molecular imaging
JF - European journal of nuclear medicine and molecular imaging
IS - 7
ER -