Quantitative estimation of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

Bert van de Ridder, Wouter Hakvoort, Johannes van Dijk, Joost Conrad Lötters, Andries de Boer

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    96 Downloads (Pure)

    Abstract

    In this paper the quantitative influence of external vibrations on the measurement value of a Coriolis Mass-Flow Meter for low flows is investigated, with the eventual goal to reduce the influence of vibrations. Model results are compared with experimental results to improve the knowledge on how external vibrations affect the measurement error. A Coriolis Mass-Flow Meter (CMFM) is an active device based on the Coriolis force principle for direct mass-flow measurements, independent of fluid properties, with a high accuracy, range-ability and repeatability. Besides the effect of the mass-flow on the mode shape of the tube, external vibrations can introduce motions that cannot be distinguished from the Coriolis force induced motion, thus introducing a measurement error. From a multi-axis flexible body model, the transfer function between external vibrations (e.g. floor vibrations) and the flow error, including the active filter characteristics, is derived. The floor vibrations are characterised with a PSD. Integrating the transfer function times the PSD over the whole frequency range results in an RMS flow error estimate. In an experiment predefined vibrations are applied on the casing of the CMFM (white noise spectra and VC norm spectra) and the error is determined. The experimental results corresponds with the model results. The agreement between model and measurements implies firstly that the influence of any floor vibration spectrum on the flow error, can be estimated and secondly that the performance of different CMFM designs can be compared and optimised by shaping their respective transfer functions.
    Original languageEnglish
    Title of host publicationProceedings of the 11th International Conference on Vibration Problems
    EditorsZ. Dimitrovova, J.R. de Almeida
    Place of PublicationLisbon, Portugal
    PublisherSpringer
    Pages1-10
    ISBN (Print)978-989-96264-4-7
    Publication statusPublished - 9 Sept 2013
    Event11th International Conference on Vibration Problems (ICOVP-2013), Lisbon, 9-12 September 2013: Proceedings of the 11th International Conference on Vibration Problems - Lisbon, Portugal
    Duration: 9 Sept 201312 Sept 2013

    Publication series

    Name
    PublisherSpringer

    Conference

    Conference11th International Conference on Vibration Problems (ICOVP-2013), Lisbon, 9-12 September 2013
    CityLisbon, Portugal
    Period9/09/1312/09/13

    Keywords

    • 2020 OA procedure

    Fingerprint

    Dive into the research topics of 'Quantitative estimation of the influence of external vibrations on the measurement error of a coriolis mass-flow meter'. Together they form a unique fingerprint.

    Cite this