TY - JOUR
T1 - Random and block copolymers based on 4-methyl-1-pentene and 1-pentene
AU - Descour, Camille
AU - Meijer-Vissers, Tamara
AU - Macko, Tibor
AU - Parkinson, Matthew
AU - Cavallo, Dario
AU - van Drongelen, Martin
AU - Hubner, Gerhard
AU - Goossens, Han
AU - Duchateau, Robbert
PY - 2012
Y1 - 2012
N2 - The zirconium acetamidinate catalyst {Cp*Zr(Me)2[N(Et)C(Me)N(tBu)]} (Cp* = ŋ5-C5Me5) was used to synthesize both random and block copolymers based on 4-methyl-1-pentene (4M1P) and 1-pentene. The polymers have been characterized by NMR spectroscopy, SEC, DSC, high temperature HPLC and CRYSTAF. Unexpectedly, the yields and molecular weights decreased with increasing amounts of 1-pentene. The reason for this behavior is that 1-pentene occasionally undergoes 2,1-misinsertions trapping the catalyst in a dormant state. These 2,1-misinsertions do not seem to occur with the bulky 4M1P (branched α-olefin). Adding a small amount of ethylene reactivates the catalyst. Unlike most semi-crystalline polymers, the density of the crystalline phase of isotactic P4M1P can be lower than of the amorphous phase, when crystallized under very high pressures. To characterize this peculiar behavior of 4M1P-based polymers, various samples have been subjected to Pressure-Volume-Temperature (PVT) measurements. While the P4M1P homopolymers and block copolymers show the expected decrease in specific volume upon crystallization, the 4M1P-rich random copolymers proved not to vary in specific volume under the same conditions.
AB - The zirconium acetamidinate catalyst {Cp*Zr(Me)2[N(Et)C(Me)N(tBu)]} (Cp* = ŋ5-C5Me5) was used to synthesize both random and block copolymers based on 4-methyl-1-pentene (4M1P) and 1-pentene. The polymers have been characterized by NMR spectroscopy, SEC, DSC, high temperature HPLC and CRYSTAF. Unexpectedly, the yields and molecular weights decreased with increasing amounts of 1-pentene. The reason for this behavior is that 1-pentene occasionally undergoes 2,1-misinsertions trapping the catalyst in a dormant state. These 2,1-misinsertions do not seem to occur with the bulky 4M1P (branched α-olefin). Adding a small amount of ethylene reactivates the catalyst. Unlike most semi-crystalline polymers, the density of the crystalline phase of isotactic P4M1P can be lower than of the amorphous phase, when crystallized under very high pressures. To characterize this peculiar behavior of 4M1P-based polymers, various samples have been subjected to Pressure-Volume-Temperature (PVT) measurements. While the P4M1P homopolymers and block copolymers show the expected decrease in specific volume upon crystallization, the 4M1P-rich random copolymers proved not to vary in specific volume under the same conditions.
U2 - 10.1016/j.polymer.2012.05.030
DO - 10.1016/j.polymer.2012.05.030
M3 - Article
SN - 0032-3861
VL - 53
SP - 3096
EP - 3106
JO - Polymer
JF - Polymer
IS - 15
ER -