TY - UNPB
T1 - Rayleigh-Taylor instability by segregation in an evaporating multi-component microdroplet
AU - Li, Yaxing
AU - Diddens, Christian
AU - Segers, Tim
AU - Wijshoff, Herman
AU - Versluis, Michel
AU - Lohse, Detlef
PY - 2020/5/28
Y1 - 2020/5/28
N2 - The evaporation of multi-component droplets is relevant to various applications but challenging to study due to the complex physicochemical dynamics. Recently, Li (2018) reported evaporation-triggered segregation in 1,2-hexanediol-water binary droplets. In this present work, we added 0.5 wt% silicone oil into the 1,2-hexanediol-water binary solution. This minute silicone oil concentration dramatically modifies the evaporation process as it triggers an early extraction of the 1,2-hexanediol from the mixture. Surprisingly, we observe that the segregation of 1,2-hexanediol forms plumes, rising up from the rim of the sessile droplet towards the apex during the droplet evaporation. By orientating the droplet upside down, i.e., by studying a pendant droplet, the absence of the plumes indicates that the flow structure is induced by buoyancy, which drives a Rayleigh-Taylor instability (i.e., driven by density differences & gravitational acceleration). From micro-PIV measurement, we further prove that the segregation of the non-volatile component (1,2-hexanediol) hinders the evaporation near the contact line, which leads to a suppression of the Marangoni flow in this region. Hence, on long time scales, gravitational effects play the dominant role in the flow structure, rather than Marangoni flows. We compare the measurement of the evaporation rate with the diffusion model of Popov (2005), coupled with Raoult's law and the activity coefficient. This comparison indeed confirms that the silicone-oil-triggered segregation of the non-volatile 1,2-hexanediol significantly delays the evaporation. With an extended diffusion model, in which the influence of the segregation has been implemented, the evaporation can be well described.
AB - The evaporation of multi-component droplets is relevant to various applications but challenging to study due to the complex physicochemical dynamics. Recently, Li (2018) reported evaporation-triggered segregation in 1,2-hexanediol-water binary droplets. In this present work, we added 0.5 wt% silicone oil into the 1,2-hexanediol-water binary solution. This minute silicone oil concentration dramatically modifies the evaporation process as it triggers an early extraction of the 1,2-hexanediol from the mixture. Surprisingly, we observe that the segregation of 1,2-hexanediol forms plumes, rising up from the rim of the sessile droplet towards the apex during the droplet evaporation. By orientating the droplet upside down, i.e., by studying a pendant droplet, the absence of the plumes indicates that the flow structure is induced by buoyancy, which drives a Rayleigh-Taylor instability (i.e., driven by density differences & gravitational acceleration). From micro-PIV measurement, we further prove that the segregation of the non-volatile component (1,2-hexanediol) hinders the evaporation near the contact line, which leads to a suppression of the Marangoni flow in this region. Hence, on long time scales, gravitational effects play the dominant role in the flow structure, rather than Marangoni flows. We compare the measurement of the evaporation rate with the diffusion model of Popov (2005), coupled with Raoult's law and the activity coefficient. This comparison indeed confirms that the silicone-oil-triggered segregation of the non-volatile 1,2-hexanediol significantly delays the evaporation. With an extended diffusion model, in which the influence of the segregation has been implemented, the evaporation can be well described.
KW - physics.flu-dyn
KW - cond-mat.soft
U2 - 10.48550/arXiv.2005.13907
DO - 10.48550/arXiv.2005.13907
M3 - Preprint
BT - Rayleigh-Taylor instability by segregation in an evaporating multi-component microdroplet
PB - ArXiv.org
ER -