TY - JOUR
T1 - Remote sensing of epibenthic shellfish using Synthetic Aperture Radar satellite imagery
AU - Nieuwhof, Sil
AU - Herman, Peter M.J.
AU - Dankers, Norbert
AU - Troost, Karin
AU - van der Wal, Daphne
PY - 2015
Y1 - 2015
N2 - On intertidal mudflats, reef-building shellfish, like the Pacific oyster and the blue mussel, provide a myriad of ecosystem services. Monitoring intertidal shellfish with high spatiotemporal resolution is important for fisheries, coastal management and ecosystem studies. Here, we explore the potential of X- (TerraSAR-X) and C-band (Radarsat-2) dual-polarized SAR data to map shellfish densities, species and coverage. We investigated two backscatter models (the integral equation model (IEM) and Oh's model) for inversion possibilities. Surface roughness (vertical roughness RMSz and correlation length L) was measured of bare sediments and shellfish beds, which was then linked to shellfish density, presence and species. Oysters, mussels and bare sediments differed in RMSz, but because the backscatter saturates at relatively low RMSz values, it was not possible to retrieve shellfish density or species composition from X- and C-band SAR. Using a classification based on univariate and multivariate logistic regression of the field and SAR image data, we constructed maps of shellfish presence (Kappa statistics for calibration 0.56-0.74 for dual-polarized SAR), which were compared with independent field surveys of the contours of the beds (Kappa statistics of agreement 0.29-0.53 when using dual-polarized SAR). We conclude that spaceborne SAR allows one to monitor the contours of shellfish-beds (thus, distinguishing shellfish substrates from bare sediment and dispersed single shellfish), but not densities and species. Although spaceborne SAR cannot replace ground surveys entirely, it could very well offer a significant improvement in efficiency.
AB - On intertidal mudflats, reef-building shellfish, like the Pacific oyster and the blue mussel, provide a myriad of ecosystem services. Monitoring intertidal shellfish with high spatiotemporal resolution is important for fisheries, coastal management and ecosystem studies. Here, we explore the potential of X- (TerraSAR-X) and C-band (Radarsat-2) dual-polarized SAR data to map shellfish densities, species and coverage. We investigated two backscatter models (the integral equation model (IEM) and Oh's model) for inversion possibilities. Surface roughness (vertical roughness RMSz and correlation length L) was measured of bare sediments and shellfish beds, which was then linked to shellfish density, presence and species. Oysters, mussels and bare sediments differed in RMSz, but because the backscatter saturates at relatively low RMSz values, it was not possible to retrieve shellfish density or species composition from X- and C-band SAR. Using a classification based on univariate and multivariate logistic regression of the field and SAR image data, we constructed maps of shellfish presence (Kappa statistics for calibration 0.56-0.74 for dual-polarized SAR), which were compared with independent field surveys of the contours of the beds (Kappa statistics of agreement 0.29-0.53 when using dual-polarized SAR). We conclude that spaceborne SAR allows one to monitor the contours of shellfish-beds (thus, distinguishing shellfish substrates from bare sediment and dispersed single shellfish), but not densities and species. Although spaceborne SAR cannot replace ground surveys entirely, it could very well offer a significant improvement in efficiency.
KW - Epibenthic shellfish
KW - Mapping
KW - Mussel
KW - Oyster
KW - SAR
KW - Surface roughness
KW - ITC-ISI-JOURNAL-ARTICLE
KW - ITC-GOLD
UR - https://doi.org10.3390/rs70403710
UR - https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/2015/isi/vanderwal_rem.pdf
U2 - 10.3390/rs70403710
DO - 10.3390/rs70403710
M3 - Article
AN - SCOPUS:84937927956
VL - 7
SP - 3710
EP - 3734
JO - Remote sensing
JF - Remote sensing
SN - 2072-4292
IS - 4
ER -