Resolution enhancement for drill-core hyperspectral mineral mapping

Isabel Cecilia Contreras Acosta*, M. Khodadadzadeh, Richard Gloaguen

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)
94 Downloads (Pure)


Drill-core samples are a key component in mineral exploration campaigns, and their rapid and objective analysis is becoming increasingly important. Hyperspectral imaging of drill-cores is a non-destructive technique that allows for non-invasive and fast mapping of mineral phases and alteration patterns. The use of adapted machine learning techniques such as supervised learning algorithms allows for a robust and accurate analysis of drill-core hyperspectral data. One of the remaining challenge is the spatial sampling of hyperspectral sensors in operational conditions, which does not allow us to render the textural and mineral diversity that is required to map minerals with low abundances and fine structures such as veins and faults. In this work, we propose a methodology in which we implement a resolution enhancement technique, a coupled non-negative matrix factorization, using hyperspectral, RGB images and high-resolution mineralogical data to produce mineral maps at higher spatial resolutions and to improve the mapping of minerals. The results demonstrate that the enhanced maps not only provide better details in the alteration patterns such as veins but also allow for mapping minerals that were previously hidden in the hyperspectral data due to its low spatial sampling
Original languageEnglish
Article number2296
Pages (from-to)1-21
Number of pages21
JournalRemote sensing
Issue number12
Publication statusPublished - 11 Jun 2021



Cite this