Retrieval of Specific Leaf Area From Landsat-8 Surface Reflectance Data Using Statistical and Physical Models

Research output: Contribution to journalArticleAcademicpeer-review

10 Citations (Scopus)
3 Downloads (Pure)

Abstract

One of the key traits in the assessment of ecosystem functions is a specific leaf area (SLA). The main aim of this study was to examine the potential of new generation satellite images, such as Landsat-8 imagery, for the retrieval of SLA at regional and global scales. Therefore, both statistical and radiative transfer model (RTM) inversion approaches for estimating SLA from the new Landsat-8 product were evaluated. Field data were collected for 33 sample plots during a field campaign in summer 2013 in the Bavarian Forest National Park, Germany, while Landsat-8 image data concurrent with the time of field campaign were acquired. Estimates of SLA were examined using different Landsat-8 spectral bands, vegetation indices calculated from these bands, and the inversion of a canopy RTM. The RTM inversion was performed utilizing continuous wavelet analysis and a look-up table (LUT) approach. The results were validated using R2 and the root-mean-square error (RMSE) between the estimated and measured SLA. In general, SLA was estimated accurately by both statistical and RTM inversion approaches. The relationships between measured and estimated SLA using the enhanced vegetation index were strong (R2 = 0.77 and RMSE = 4.44%). Furthermore, the predictive model developed from combination of the wavelet features at 654.5 nm (scale 9) and 2200.5 nm (scale 2) correlated strongly with SLA (R2 = 0.79 and RMSE = 7.52%). The inversion of LUT using a spectral subset consisting of bands 5, 6, and 7 of Landsat-8 (R2 = 0.73 and RMSE = 5.33%) yielded a higher accuracy and precision than any other spectral subset. The findings of this study provide insights into the potential of the new generation of multispectral medium-resolution satellite imagery, such as Landsat-8 and Sentinel-2, for accurate retrieval and mapping of SLA using either statistical or RTM inversion methods.

Original languageEnglish
Pages (from-to)3529-3536
JournalIEEE Journal of selected topics in applied earth observations and remote sensing
Volume10
Issue number8
DOIs
Publication statusPublished - 14 Apr 2017

Fingerprint

surface reflectance
statistical data
Radiative transfer
leaf area
Landsat
Mean square error
radiative transfer
vegetation index
Satellite imagery
Wavelet analysis
Ecosystems
wavelet analysis
Satellites
ecosystem function
satellite imagery
wavelet
inversion
national park
imagery
canopy

Keywords

  • ITC-ISI-JOURNAL-ARTICLE

Cite this

@article{e23cf630057749b4b16af1127594a13b,
title = "Retrieval of Specific Leaf Area From Landsat-8 Surface Reflectance Data Using Statistical and Physical Models",
abstract = "One of the key traits in the assessment of ecosystem functions is a specific leaf area (SLA). The main aim of this study was to examine the potential of new generation satellite images, such as Landsat-8 imagery, for the retrieval of SLA at regional and global scales. Therefore, both statistical and radiative transfer model (RTM) inversion approaches for estimating SLA from the new Landsat-8 product were evaluated. Field data were collected for 33 sample plots during a field campaign in summer 2013 in the Bavarian Forest National Park, Germany, while Landsat-8 image data concurrent with the time of field campaign were acquired. Estimates of SLA were examined using different Landsat-8 spectral bands, vegetation indices calculated from these bands, and the inversion of a canopy RTM. The RTM inversion was performed utilizing continuous wavelet analysis and a look-up table (LUT) approach. The results were validated using R2 and the root-mean-square error (RMSE) between the estimated and measured SLA. In general, SLA was estimated accurately by both statistical and RTM inversion approaches. The relationships between measured and estimated SLA using the enhanced vegetation index were strong (R2 = 0.77 and RMSE = 4.44{\%}). Furthermore, the predictive model developed from combination of the wavelet features at 654.5 nm (scale 9) and 2200.5 nm (scale 2) correlated strongly with SLA (R2 = 0.79 and RMSE = 7.52{\%}). The inversion of LUT using a spectral subset consisting of bands 5, 6, and 7 of Landsat-8 (R2 = 0.73 and RMSE = 5.33{\%}) yielded a higher accuracy and precision than any other spectral subset. The findings of this study provide insights into the potential of the new generation of multispectral medium-resolution satellite imagery, such as Landsat-8 and Sentinel-2, for accurate retrieval and mapping of SLA using either statistical or RTM inversion methods.",
keywords = "ITC-ISI-JOURNAL-ARTICLE",
author = "Ali, {Abebe Mohammed} and R. Darvishzadeh and Skidmore, {Andrew K.}",
year = "2017",
month = "4",
day = "14",
doi = "10.1109/JSTARS.2017.2690623",
language = "English",
volume = "10",
pages = "3529--3536",
journal = "IEEE Journal of selected topics in applied earth observations and remote sensing",
issn = "1939-1404",
publisher = "IEEE",
number = "8",

}

TY - JOUR

T1 - Retrieval of Specific Leaf Area From Landsat-8 Surface Reflectance Data Using Statistical and Physical Models

AU - Ali, Abebe Mohammed

AU - Darvishzadeh, R.

AU - Skidmore, Andrew K.

PY - 2017/4/14

Y1 - 2017/4/14

N2 - One of the key traits in the assessment of ecosystem functions is a specific leaf area (SLA). The main aim of this study was to examine the potential of new generation satellite images, such as Landsat-8 imagery, for the retrieval of SLA at regional and global scales. Therefore, both statistical and radiative transfer model (RTM) inversion approaches for estimating SLA from the new Landsat-8 product were evaluated. Field data were collected for 33 sample plots during a field campaign in summer 2013 in the Bavarian Forest National Park, Germany, while Landsat-8 image data concurrent with the time of field campaign were acquired. Estimates of SLA were examined using different Landsat-8 spectral bands, vegetation indices calculated from these bands, and the inversion of a canopy RTM. The RTM inversion was performed utilizing continuous wavelet analysis and a look-up table (LUT) approach. The results were validated using R2 and the root-mean-square error (RMSE) between the estimated and measured SLA. In general, SLA was estimated accurately by both statistical and RTM inversion approaches. The relationships between measured and estimated SLA using the enhanced vegetation index were strong (R2 = 0.77 and RMSE = 4.44%). Furthermore, the predictive model developed from combination of the wavelet features at 654.5 nm (scale 9) and 2200.5 nm (scale 2) correlated strongly with SLA (R2 = 0.79 and RMSE = 7.52%). The inversion of LUT using a spectral subset consisting of bands 5, 6, and 7 of Landsat-8 (R2 = 0.73 and RMSE = 5.33%) yielded a higher accuracy and precision than any other spectral subset. The findings of this study provide insights into the potential of the new generation of multispectral medium-resolution satellite imagery, such as Landsat-8 and Sentinel-2, for accurate retrieval and mapping of SLA using either statistical or RTM inversion methods.

AB - One of the key traits in the assessment of ecosystem functions is a specific leaf area (SLA). The main aim of this study was to examine the potential of new generation satellite images, such as Landsat-8 imagery, for the retrieval of SLA at regional and global scales. Therefore, both statistical and radiative transfer model (RTM) inversion approaches for estimating SLA from the new Landsat-8 product were evaluated. Field data were collected for 33 sample plots during a field campaign in summer 2013 in the Bavarian Forest National Park, Germany, while Landsat-8 image data concurrent with the time of field campaign were acquired. Estimates of SLA were examined using different Landsat-8 spectral bands, vegetation indices calculated from these bands, and the inversion of a canopy RTM. The RTM inversion was performed utilizing continuous wavelet analysis and a look-up table (LUT) approach. The results were validated using R2 and the root-mean-square error (RMSE) between the estimated and measured SLA. In general, SLA was estimated accurately by both statistical and RTM inversion approaches. The relationships between measured and estimated SLA using the enhanced vegetation index were strong (R2 = 0.77 and RMSE = 4.44%). Furthermore, the predictive model developed from combination of the wavelet features at 654.5 nm (scale 9) and 2200.5 nm (scale 2) correlated strongly with SLA (R2 = 0.79 and RMSE = 7.52%). The inversion of LUT using a spectral subset consisting of bands 5, 6, and 7 of Landsat-8 (R2 = 0.73 and RMSE = 5.33%) yielded a higher accuracy and precision than any other spectral subset. The findings of this study provide insights into the potential of the new generation of multispectral medium-resolution satellite imagery, such as Landsat-8 and Sentinel-2, for accurate retrieval and mapping of SLA using either statistical or RTM inversion methods.

KW - ITC-ISI-JOURNAL-ARTICLE

UR - https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/2017/isi/darvishzadeh_ret.pdf

U2 - 10.1109/JSTARS.2017.2690623

DO - 10.1109/JSTARS.2017.2690623

M3 - Article

VL - 10

SP - 3529

EP - 3536

JO - IEEE Journal of selected topics in applied earth observations and remote sensing

JF - IEEE Journal of selected topics in applied earth observations and remote sensing

SN - 1939-1404

IS - 8

ER -