TY - JOUR
T1 - Role of gravity or confining pressure and contact stiffness in granular rheology
AU - Singh, Abhinendra
AU - Magnanimo, Vanessa
AU - Saitoh, Kuniyasu
AU - Luding, Stefan
PY - 2015
Y1 - 2015
N2 - The steady-state shear rheology of granular materials is investigated in slow quasistatic and inertial flows. The effect of gravity (thus the local pressure) and the often-neglected contact stiffness are the focus of this study. A series of particle simulations are performed on a weakly frictional granular assembly in a split-bottom geometry considering various magnitudes of gravity and contact stiffnesses. While traditionally the inertial number, i.e., the ratio of stress to strain-rate time scales, is used to describe the flow rheology, we report that a second dimensionless number, the ratio of softness and stress time scales, must also be included to characterize the bulk flow behavior. For slow, quasistatic flows, the density increases while the effective (macroscopic) friction decreases with increase in either particle softness or local pressure. This trend is added to the $\mu (I)$ rheology and can be traced back to the anisotropy in the contact network, displaying a linear correlation between the effective friction coefficient and deviatoric fabric in the steady state. When the external rotation rate is increased towards the inertial regime, for a given gravity field and contact stiffness, the effective friction increases faster than linearly with the deviatoric fabric.
AB - The steady-state shear rheology of granular materials is investigated in slow quasistatic and inertial flows. The effect of gravity (thus the local pressure) and the often-neglected contact stiffness are the focus of this study. A series of particle simulations are performed on a weakly frictional granular assembly in a split-bottom geometry considering various magnitudes of gravity and contact stiffnesses. While traditionally the inertial number, i.e., the ratio of stress to strain-rate time scales, is used to describe the flow rheology, we report that a second dimensionless number, the ratio of softness and stress time scales, must also be included to characterize the bulk flow behavior. For slow, quasistatic flows, the density increases while the effective (macroscopic) friction decreases with increase in either particle softness or local pressure. This trend is added to the $\mu (I)$ rheology and can be traced back to the anisotropy in the contact network, displaying a linear correlation between the effective friction coefficient and deviatoric fabric in the steady state. When the external rotation rate is increased towards the inertial regime, for a given gravity field and contact stiffness, the effective friction increases faster than linearly with the deviatoric fabric.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-84930625715&partnerID=MN8TOARS
U2 - 10.1088/1367-2630/17/4/043028
DO - 10.1088/1367-2630/17/4/043028
M3 - Article
VL - 17
JO - New journal of physics
JF - New journal of physics
SN - 1367-2630
M1 - 043028
ER -