Role of intrinsic molecular dipole in energy level alignment at organic interfaces

L. Lindell, Deniz Cakir, G. Brocks, M. Fahlman, S. Braun

Research output: Contribution to journalArticleAcademicpeer-review

22 Citations (Scopus)

Abstract

The energy level alignment in metal-organic and organic-organic junctions of the widely used materials tris-(8-hydroxyquinoline)aluminum (Alq3) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) is investigated. The measured alignment schemes for single and bilayer films of Alq3 and NTCDA are interpreted with the integer charge transfer (ICT) model. Single layer films of Alq3 feature a constant vacuum level shift of ∼0.2–0.4 eV in the absence of charge transfer across the interface. This finding is attributed to the intrinsic dipole of the Alq3 molecule and (partial) ordering of the molecules at the interfaces. The vacuum level shift changes the onset of Fermi level pinning, as it changes the energy needed for equilibrium charge transfer across the interface.
Original languageUndefined
Article number223301
Pages (from-to)223301/1-223301/4
Number of pages4
JournalApplied physics letters
Volume102
Issue number223301
DOIs
Publication statusPublished - 2013

Keywords

  • METIS-298630
  • IR-90024

Cite this

Lindell, L., Cakir, D., Brocks, G., Fahlman, M., & Braun, S. (2013). Role of intrinsic molecular dipole in energy level alignment at organic interfaces. Applied physics letters, 102(223301), 223301/1-223301/4. [223301]. https://doi.org/10.1063/1.4809567