ROX: Run-Time Optimization of XQueries

Riham Abdel Kader, Peter Boncz, Stefan Manegold, Maurice van Keulen

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

26 Citations (Scopus)
65 Downloads (Pure)

Abstract

Optimization of complex XQuery queries that combine many XPath steps as well as join conditions is currently hindered by the absence of good result size estimation and cost models for XQuery. Additionally, the state-of-the-art of even relational query optimization still struggles to cope with cost model estimation errors that increase with plan size, as well as with the effect of correlated join, selection and aggregation predicates. In this research, we propose to radically depart from the traditional path of separating the query compilation and query execution phases, by having the optimizer execute and materialize partial results on the fly, observing intermediate result characteristics as well as applying sampling techniques to evaluate the real observed query cost. The query optimization problem studied here takes as input a Join Graph where the edges are either equi-predicates or XPath axis steps, and the execution environment provides value- and structural-join algorithms, in addition to structural and value-based indices. While run-time optimization with sampling removes many of the vulnerabilities of classical optimizers, it brings its own challenges with respect to keeping resource usage under control, both with respect to the materialization of intermediates, as well as the cost of plan exploration using sampling. The ROX approach deals with these issues by limiting the run-time search space to so-called "zero-investment" algorithms for which sampling can be guaranteed to be strictly linear in sample size. While the Join Graph used in ROX is a purely relational concept, it crucially fits our XQuery domain as all structural join algorithms and XML value indices we use have the zero-investment property. We perform extensive experimental evaluation on large XML datasets that shows that our run-time query optimizer finds good query plans in a robust fashion and has limited run-time overhead.
Original languageEnglish
Title of host publicationSIGMOD '09
Subtitle of host publicationProceedings of the 35th ACM SIGMOD International Conference on Management of Data
Place of PublicationNew York
PublisherAssociation for Computing Machinery
Pages615-626
Number of pages12
ISBN (Print)978-1-60558-551-2
DOIs
Publication statusPublished - 29 Jun 2009
Event35th ACM SIGMOD International Conference on Management of Data (SIGMOD2009) - Providence, Rhode Island, USA
Duration: 29 Jun 20092 Jul 2009

Conference

Conference35th ACM SIGMOD International Conference on Management of Data (SIGMOD2009)
Period29/06/092/07/09
Other29 June - 02 July 2009

Keywords

  • EWI-15178
  • METIS-265195
  • DB-XMLDB: XML DATABASES

Fingerprint

Dive into the research topics of 'ROX: Run-Time Optimization of XQueries'. Together they form a unique fingerprint.

Cite this