RSFQ Circuitry Using Intrinsic pi-Phase shifts

T. Ortlepp, T. Ortlepp, A.O. Mielke, A. Ariando, C.J.M. Verwijs, K.F.K. Foo, A. Andreski, A. Andreski, Horst Rogalla, F.H. Uhlmann, Johannes W.M. Hilgenkamp

Research output: Contribution to journalArticleAcademicpeer-review

25 Citations (Scopus)
191 Downloads (Pure)


The latching of temporary data is essential in the rapid single flux quantum (RSFQ) electronics family. Its pulse-driven nature requires two or more stable states in almost all cells. Storage loops must be designed to have exactly two stable states for binary data representation. In conventional RSFQ such loops are constructed to have two stable states, e.g. by using asymmetric bias currents. This bistability naturally occurs when phase-shifting elements are included in the circuitry, such as pi-Josephson junctions or a pi-phase shift associated with an unconventional (d-wave) order parameter symmetry. Both approaches can be treated completely analogously, giving the same results. We have demonstrated for the first time the correct operation of a logic circuit, a toggle-flip-flop, using rings with an intrinsic pi-phase shift (pi-rings) based on hybrid high-Tc to low-Tc Josephson junctions. Because of their natural bistability these pi-rings improve the device symmetry, enhance operation margins and alleviate the need for bias current lines.
Original languageUndefined
Pages (from-to)659-
JournalIEEE transactions on applied superconductivity
Issue number2
Publication statusPublished - 2007


  • METIS-242729
  • IR-75090

Cite this