TY - JOUR
T1 - Savanna grass nitrogen to phosphorous ratio estimation using field spectroscopy and the potential for estimation with imaging spectroscopy
AU - Ramoelo, A.
AU - Skidmore, A.K.
AU - Schlerf, M.
AU - Heitkönig, I.M.A.
AU - Mathieu, R.
AU - Cho, M.A.
PY - 2013
Y1 - 2013
N2 - Determining the foliar N:P ratio provides a tool for understanding nutrient limitation on plant production and consequently for the feeding patterns of herbivores. In order to understand the nutrient limitation at landscape scale, remote sensing techniques offer that opportunity. The objective of this study is to investigate the utility of field spectroscopy and a potential of hyperspectral mapper (HyMap) spectra to estimate foliar N:P ratio. Field spectral measurements were undertaken, and grass samples were collected for foliar N and P extraction. The foliar N:P ratio prediction models were developed using partial least square regression (PLSR) with original spectra and transformed spectra for field and the resampled field spectra to HyMap. Spectral transformations included the continuum removal (CR), water removal (WR), first difference derivative (FD) and log transformation (Log(1/R)). The results showed that CR and WR spectra in combination with PLSR predicted foliar N:P ratio with higher accuracy as compared to FD and R, using field spectra. For HyMap spectral analysis, addition to CR and WR, FD achieved higher estimation accuracy. The performance of FD, CR and WR spectra were attributed to their ability to minimize sensor and water effects on the fresh leaf spectra, respectively. The study demonstrated a potential to predict foliar N:P ratio using field and HyMap simulated spectra and shortwave infrared (SWIR) found to be highly sensitive to foliar N:P ratio. The study recommends the prediction of foliar N:P ratio at landscape level using airborne hyperspectral data and could be used by the resource managers, park managers, farmers and ecologists to understand the feeding patterns, resource selection and distribution of herbivores (i.e. wild and livestock).
AB - Determining the foliar N:P ratio provides a tool for understanding nutrient limitation on plant production and consequently for the feeding patterns of herbivores. In order to understand the nutrient limitation at landscape scale, remote sensing techniques offer that opportunity. The objective of this study is to investigate the utility of field spectroscopy and a potential of hyperspectral mapper (HyMap) spectra to estimate foliar N:P ratio. Field spectral measurements were undertaken, and grass samples were collected for foliar N and P extraction. The foliar N:P ratio prediction models were developed using partial least square regression (PLSR) with original spectra and transformed spectra for field and the resampled field spectra to HyMap. Spectral transformations included the continuum removal (CR), water removal (WR), first difference derivative (FD) and log transformation (Log(1/R)). The results showed that CR and WR spectra in combination with PLSR predicted foliar N:P ratio with higher accuracy as compared to FD and R, using field spectra. For HyMap spectral analysis, addition to CR and WR, FD achieved higher estimation accuracy. The performance of FD, CR and WR spectra were attributed to their ability to minimize sensor and water effects on the fresh leaf spectra, respectively. The study demonstrated a potential to predict foliar N:P ratio using field and HyMap simulated spectra and shortwave infrared (SWIR) found to be highly sensitive to foliar N:P ratio. The study recommends the prediction of foliar N:P ratio at landscape level using airborne hyperspectral data and could be used by the resource managers, park managers, farmers and ecologists to understand the feeding patterns, resource selection and distribution of herbivores (i.e. wild and livestock).
KW - 22/4 OA procedure
KW - ITC-ISI-JOURNAL-ARTICLE
UR - https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/2013/isi/skidmore_sav.pdf
U2 - 10.1016/j.jag.2012.10.009
DO - 10.1016/j.jag.2012.10.009
M3 - Article
SN - 1569-8432
VL - 23
SP - 334
EP - 343
JO - International Journal of Applied Earth Observation and Geoinformation (JAG)
JF - International Journal of Applied Earth Observation and Geoinformation (JAG)
ER -