Abstract
In this work, we investigate the effect of capillary forces and particle size on wet granular flows and we propose a scaling methodology that ensures the conservation of the bed flow. We validate the scaling law experimentally by using different size glass beads with tunable capillary forces. The latter is obtained using mixtures of ethanol-water as interstitial liquid and by increasing the hydrophobicity of glass beads with an ad-hoc silanization procedure. The scaling methodology in the flow regimes considered (slipping, slumping and rolling) yields similar bed flow for different particle sizes including the angle of repose that normally increases when decreasing the particle size.
Original language | English |
---|---|
Article number | 03078 |
Journal | EPJ Web of Conferences |
Volume | 140 |
DOIs | |
Publication status | Published - 30 Jun 2017 |
Event | 8th International Conference on Micromechanics on Granular Media, Powders & Grains 2017 - Montpellier, France Duration: 3 Jul 2017 → 7 Jul 2017 Conference number: 8 http://pg2017.org/en/ |