TY - JOUR
T1 - Scoping Meta-Review of Methods Used to Assess Artificial Intelligence-Based Medical Devices for Heart Failure
AU - Di Bidino, Rossella
AU - Piaggio, Davide
AU - Andellini, Martina
AU - Merino-Barbancho, Beatriz
AU - Lopez-Perez, Laura
AU - Zhu, Tianhui
AU - Raza, Zeeshan
AU - Ni, Melody
AU - Morrison, Andra
AU - Borsci, Simone
AU - Fico, Giuseppe
AU - Pecchia, Leandro
AU - Iadanza, Ernesto
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/10
Y1 - 2023/10
N2 - Artificial intelligence and machine learning (AI/ML) are playing increasingly important roles, permeating the field of medical devices (MDs). This rapid progress has not yet been matched by the Health Technology Assessment (HTA) process, which still needs to define a common methodology for assessing AI/ML-based MDs. To collect existing evidence from the literature about the methods used to assess AI-based MDs, with a specific focus on those used for the management of heart failure (HF), the International Federation of Medical and Biological Engineering (IFMBE) conducted a scoping meta-review. This manuscript presents the results of this search, which covered the period from January 1974 to October 2022. After careful independent screening, 21 reviews, mainly conducted in North America and Europe, were retained and included. Among the findings were that deep learning is the most commonly utilised method and that electronic health records and registries are among the most prevalent sources of data for AI/ML algorithms. Out of the 21 included reviews, 19 focused on risk prediction and/or the early diagnosis of HF. Furthermore, 10 reviews provided evidence of the impact on the incidence/progression of HF, and 13 on the length of stay. From an HTA perspective, the main areas requiring improvement are the quality assessment of studies on AI/ML (included in 11 out of 21 reviews) and their data sources, as well as the definition of the criteria used to assess the selection of the most appropriate AI/ML algorithm.
AB - Artificial intelligence and machine learning (AI/ML) are playing increasingly important roles, permeating the field of medical devices (MDs). This rapid progress has not yet been matched by the Health Technology Assessment (HTA) process, which still needs to define a common methodology for assessing AI/ML-based MDs. To collect existing evidence from the literature about the methods used to assess AI-based MDs, with a specific focus on those used for the management of heart failure (HF), the International Federation of Medical and Biological Engineering (IFMBE) conducted a scoping meta-review. This manuscript presents the results of this search, which covered the period from January 1974 to October 2022. After careful independent screening, 21 reviews, mainly conducted in North America and Europe, were retained and included. Among the findings were that deep learning is the most commonly utilised method and that electronic health records and registries are among the most prevalent sources of data for AI/ML algorithms. Out of the 21 included reviews, 19 focused on risk prediction and/or the early diagnosis of HF. Furthermore, 10 reviews provided evidence of the impact on the incidence/progression of HF, and 13 on the length of stay. From an HTA perspective, the main areas requiring improvement are the quality assessment of studies on AI/ML (included in 11 out of 21 reviews) and their data sources, as well as the definition of the criteria used to assess the selection of the most appropriate AI/ML algorithm.
KW - artificial intelligence
KW - decision making
KW - health technology assessment
KW - heart failure
KW - machine learning
KW - scoping review
KW - value assessment
UR - http://www.scopus.com/inward/record.url?scp=85175143559&partnerID=8YFLogxK
U2 - 10.3390/bioengineering10101109
DO - 10.3390/bioengineering10101109
M3 - Review article
AN - SCOPUS:85175143559
SN - 2306-5354
VL - 10
JO - Bioengineering
JF - Bioengineering
IS - 10
M1 - 1109
ER -