Seawater-Degradable Polymers—Fighting the Marine Plastic Pollution

Ge Xia Wang*, Dan Huang, Jun Hui Ji*, Carolin Völker, Frederik R. Wurm*

*Corresponding author for this work

Research output: Contribution to journalReview articleAcademicpeer-review

283 Citations (Scopus)
213 Downloads (Pure)

Abstract

Polymers shape human life but they also have been identified as pollutants in the oceans due to their long lifetime and low degradability. Recently, various researchers have studied the impact of (micro)plastics on marine life, biodiversity, and potential toxicity. Even if the consequences are still heavily discussed, prevention of unnecessary waste is desired. Especially, newly designed polymers that degrade in seawater are discussed as potential alternatives to commodity polymers in certain applications. Biodegradable polymers that degrade in vivo (used for biomedical applications) or during composting often exhibit too slow degradation rates in seawater. To date, no comprehensive summary for the degradation performance of polymers in seawater has been reported, nor are the studies for seawater-degradation following uniform standards. This review summarizes concepts, mechanisms, and other factors affecting the degradation process in seawater of several biodegradable polymers or polymer blends. As most of such materials cannot degrade or degrade too slowly, strategies and innovative routes for the preparation of seawater-degradable polymers with rapid degradation in natural environments are reviewed. It is believed that this selection will help to further understand and drive the development of seawater-degradable polymers.

Original languageEnglish
Article number2001121
JournalAdvanced science
Volume8
Issue number1
DOIs
Publication statusPublished - 6 Jan 2020

Keywords

  • biodegradability
  • biodegradable polyesters
  • marine plastic pollution
  • seawater-degradable polymers

Fingerprint

Dive into the research topics of 'Seawater-Degradable Polymers—Fighting the Marine Plastic Pollution'. Together they form a unique fingerprint.

Cite this