Abstract
Collaboration between financial institutions helps to improve detection of fraud. However, exchange of relevant data between these institutions is often not possible due to privacy constraints and data confidentiality. An important example of relevant data for fraud detection is given by a transaction graph, where the nodes represent bank accounts and the links consist of the transactions between these accounts. Previous works show that features derived from such graphs, like PageRank, can be used to improve fraud detection. However, each institution can only see a part of the whole transaction graph, corresponding to the accounts of its own customers. In this research a new method is described, making use of secure multiparty computation (MPC) techniques, allowing multiple parties to jointly compute the PageRank values of their combined transaction graphs securely, while guaranteeing that each party only learns the PageRank values of its own accounts and nothing about the other transaction graphs. In our experiments this method is applied to graphs containing up to tens of thousands of nodes. The execution time scales linearly with the number of nodes, and the method is highly parallelizable. Secure multiparty PageRank is feasible in a realistic setting with millions of nodes per party by extrapolating the results from our experiments.
Original language | English |
---|---|
Title of host publication | Financial Cryptography and Data Security |
Subtitle of host publication | 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019, Revised Selected Papers |
Editors | Ian Goldberg, Tyler Moore |
Place of Publication | Cham |
Publisher | Springer |
Pages | 605-623 |
Number of pages | 19 |
ISBN (Electronic) | 978-3-030-32101-7 |
ISBN (Print) | 978-3-030-32100-0 |
DOIs | |
Publication status | Published - 2019 |
Externally published | Yes |
Event | 23rd International Conference on Financial Cryptography and Data Security, FC 2019 - St. Kitts, Saint Kitts and Nevis Duration: 18 Feb 2019 → 22 Feb 2019 Conference number: 23 |
Publication series
Name | Lecture Notes in Computer Science |
---|---|
Publisher | Springer |
Volume | 11598 |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 23rd International Conference on Financial Cryptography and Data Security, FC 2019 |
---|---|
Abbreviated title | FC 2019 |
Country/Territory | Saint Kitts and Nevis |
City | St. Kitts |
Period | 18/02/19 → 22/02/19 |
Keywords
- Collaborative computation
- Fraud detection
- Multiparty computation
- PageRank
- n/a OA procedure