Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

Jose Maria Alonso, Abraham A.M. Bielen, Wouter Olthuis, Servé W.M. Kengen, Han Zuilhof*, Maurice C.R. Franssen

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

17 Citations (Scopus)
84 Downloads (Pure)

Abstract

Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH 2 -terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.

Original languageEnglish
Pages (from-to)283-293
Number of pages11
JournalApplied surface science
Volume383
DOIs
Publication statusPublished - 15 Oct 2016

Keywords

  • Enzyme immobilization
  • Lactate biosensor
  • Platinum
  • Self-assembled monolayers
  • 2023 OA procedure

Fingerprint

Dive into the research topics of 'Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing'. Together they form a unique fingerprint.

Cite this