Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

J.M. Aznar Alonso, A.A.M Bielen, Wouter Olthuis, S.W.M Kengen, H. Zuilhof, M. Franssen

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)

Abstract

Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors. (C) 2016 Elsevier B.V. All rights reserved.
Original languageUndefined
Pages (from-to)283-293
Number of pages11
JournalApplied surface science
Volume383
DOIs
Publication statusPublished - 15 Oct 2016

Keywords

  • EWI-27105
  • METIS-318472
  • IR-100784

Cite this

Aznar Alonso, J.M. ; Bielen, A.A.M ; Olthuis, Wouter ; Kengen, S.W.M ; Zuilhof, H. ; Franssen, M. / Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing. In: Applied surface science. 2016 ; Vol. 383. pp. 283-293.
@article{34c63d6353a6407ea0ec0bd51e9fbef2,
title = "Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing",
abstract = "Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors. (C) 2016 Elsevier B.V. All rights reserved.",
keywords = "EWI-27105, METIS-318472, IR-100784",
author = "{Aznar Alonso}, J.M. and A.A.M Bielen and Wouter Olthuis and S.W.M Kengen and H. Zuilhof and M. Franssen",
note = "eemcs-eprint-27105",
year = "2016",
month = "10",
day = "15",
doi = "10.1016/j.apsusc.2016.05.006",
language = "Undefined",
volume = "383",
pages = "283--293",
journal = "Applied surface science",
issn = "0169-4332",
publisher = "Elsevier",

}

Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing. / Aznar Alonso, J.M.; Bielen, A.A.M; Olthuis, Wouter; Kengen, S.W.M; Zuilhof, H.; Franssen, M.

In: Applied surface science, Vol. 383, 15.10.2016, p. 283-293.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

AU - Aznar Alonso, J.M.

AU - Bielen, A.A.M

AU - Olthuis, Wouter

AU - Kengen, S.W.M

AU - Zuilhof, H.

AU - Franssen, M.

N1 - eemcs-eprint-27105

PY - 2016/10/15

Y1 - 2016/10/15

N2 - Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors. (C) 2016 Elsevier B.V. All rights reserved.

AB - Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors. (C) 2016 Elsevier B.V. All rights reserved.

KW - EWI-27105

KW - METIS-318472

KW - IR-100784

U2 - 10.1016/j.apsusc.2016.05.006

DO - 10.1016/j.apsusc.2016.05.006

M3 - Article

VL - 383

SP - 283

EP - 293

JO - Applied surface science

JF - Applied surface science

SN - 0169-4332

ER -