Sensitivity of Landsat-8 OLI and TIRS Data to Foliar Properties of Early Stage Bark Beetle (Ips typographus, L.) Infestation

H.J. Abdullah, R. Darvishzadeh, A.K. Skidmore, Marco Heurich

Research output: Contribution to journalArticleAcademicpeer-review

27 Downloads (Pure)

Abstract

In this study, the early stage of European spruce bark beetle (Ips typographus, L.) infestation (so-called green attack) is investigated using Landsat-8 optical and thermal data. We conducted an extensive field survey in June and the beginning of July 2016, to collect field data measurements from several infested and healthy trees in the Bavarian Forest National Park (BFNP), Germany. In total, 157 trees were selected, and leaf traits (i.e. stomatal conductance, chlorophyll fluorescence, and water content) were measured. Three Landsat-8 images from May, July, and August 2016 were studied, representing an early stage, advanced stage, and post-infestation, respectively. Spectral vegetation indices (SVIs) sensitive to the measured traits were calculated from the optical domain (VIS, NIR, and SWIR), and canopy surface temperature (CST) was calculated from the thermal infrared band using the mono-window algorithm. The leaf traits were used to examine the impact of bark beetle infestation on the infested trees and to explore the link between these traits and remote sensing data (CST and SVIs). The differences between healthy and infested samples regarding measured leaf traits were assessed using Student’s t test. The relative importance of the CST and SVIs for estimating measured leaf traits was evaluated based on the variable importance in projection (VIP) obtained from the partial least squares regression (PLSR) analysis. A temporal comparison was then made for SVIs with a VIP > 1, including CST, using statistical significance tests. The clustering method using a principal components analysis (PCA) was used to examine visually how well the two groups of sample plots (healthy and infested) are separated in 2-D space based on principal component scores. Finally, linear regression (LR) was used to generate the leaf traits maps using the SVI that have highest VIP score and then used to produce a stress map for the study area. The results revealed that all measured leaf traits were significantly different (p < 0.05) between healthy versus infested samples. Moreover, the study showed that CST was superior to the SVIs in detecting subtle canopy changes due to bark beetle infestation for the three months considered in this study. The results showed that CST is an essential variable for estimating measured leaf traits with VIP > 1, improving the results of clustering when used with other SVIs. Likewise, the stress map produced by CST and leaf traits well presented the infestation areas at the green attacked stage. The new insight offered by this study is that the stress induced by the early stage of bark beetle infestation is more pronounced by Landsat-8 thermal bands than the SVIs calculated from its optical bands. The potential of CST in detecting the green attack stage would have positive implications for forest practice.
Original languageEnglish
Article number398
Number of pages23
JournalRemote sensing
Volume11
Issue number4
DOIs
Publication statusPublished - 15 Feb 2019

Fingerprint

vegetation index
bark
Landsat
beetle
surface temperature
canopy
stomatal conductance
field survey
principal component analysis
regression analysis
chlorophyll
national park
fluorescence
student
water content
remote sensing

Keywords

  • ITC-ISI-JOURNAL-ARTICLE
  • ITC-GOLD

Cite this

@article{515ddee6b1144a2ba411bda59293d3a6,
title = "Sensitivity of Landsat-8 OLI and TIRS Data to Foliar Properties of Early Stage Bark Beetle (Ips typographus, L.) Infestation",
abstract = "In this study, the early stage of European spruce bark beetle (Ips typographus, L.) infestation (so-called green attack) is investigated using Landsat-8 optical and thermal data. We conducted an extensive field survey in June and the beginning of July 2016, to collect field data measurements from several infested and healthy trees in the Bavarian Forest National Park (BFNP), Germany. In total, 157 trees were selected, and leaf traits (i.e. stomatal conductance, chlorophyll fluorescence, and water content) were measured. Three Landsat-8 images from May, July, and August 2016 were studied, representing an early stage, advanced stage, and post-infestation, respectively. Spectral vegetation indices (SVIs) sensitive to the measured traits were calculated from the optical domain (VIS, NIR, and SWIR), and canopy surface temperature (CST) was calculated from the thermal infrared band using the mono-window algorithm. The leaf traits were used to examine the impact of bark beetle infestation on the infested trees and to explore the link between these traits and remote sensing data (CST and SVIs). The differences between healthy and infested samples regarding measured leaf traits were assessed using Student’s t test. The relative importance of the CST and SVIs for estimating measured leaf traits was evaluated based on the variable importance in projection (VIP) obtained from the partial least squares regression (PLSR) analysis. A temporal comparison was then made for SVIs with a VIP > 1, including CST, using statistical significance tests. The clustering method using a principal components analysis (PCA) was used to examine visually how well the two groups of sample plots (healthy and infested) are separated in 2-D space based on principal component scores. Finally, linear regression (LR) was used to generate the leaf traits maps using the SVI that have highest VIP score and then used to produce a stress map for the study area. The results revealed that all measured leaf traits were significantly different (p < 0.05) between healthy versus infested samples. Moreover, the study showed that CST was superior to the SVIs in detecting subtle canopy changes due to bark beetle infestation for the three months considered in this study. The results showed that CST is an essential variable for estimating measured leaf traits with VIP > 1, improving the results of clustering when used with other SVIs. Likewise, the stress map produced by CST and leaf traits well presented the infestation areas at the green attacked stage. The new insight offered by this study is that the stress induced by the early stage of bark beetle infestation is more pronounced by Landsat-8 thermal bands than the SVIs calculated from its optical bands. The potential of CST in detecting the green attack stage would have positive implications for forest practice.",
keywords = "ITC-ISI-JOURNAL-ARTICLE, ITC-GOLD",
author = "H.J. Abdullah and R. Darvishzadeh and A.K. Skidmore and Marco Heurich",
year = "2019",
month = "2",
day = "15",
doi = "10.3390/rs11040398",
language = "English",
volume = "11",
journal = "Remote sensing",
issn = "2072-4292",
publisher = "Multidisciplinary Digital Publishing Institute",
number = "4",

}

Sensitivity of Landsat-8 OLI and TIRS Data to Foliar Properties of Early Stage Bark Beetle (Ips typographus, L.) Infestation. / Abdullah, H.J.; Darvishzadeh, R.; Skidmore, A.K.; Heurich, Marco.

In: Remote sensing, Vol. 11, No. 4, 398, 15.02.2019.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Sensitivity of Landsat-8 OLI and TIRS Data to Foliar Properties of Early Stage Bark Beetle (Ips typographus, L.) Infestation

AU - Abdullah, H.J.

AU - Darvishzadeh, R.

AU - Skidmore, A.K.

AU - Heurich, Marco

PY - 2019/2/15

Y1 - 2019/2/15

N2 - In this study, the early stage of European spruce bark beetle (Ips typographus, L.) infestation (so-called green attack) is investigated using Landsat-8 optical and thermal data. We conducted an extensive field survey in June and the beginning of July 2016, to collect field data measurements from several infested and healthy trees in the Bavarian Forest National Park (BFNP), Germany. In total, 157 trees were selected, and leaf traits (i.e. stomatal conductance, chlorophyll fluorescence, and water content) were measured. Three Landsat-8 images from May, July, and August 2016 were studied, representing an early stage, advanced stage, and post-infestation, respectively. Spectral vegetation indices (SVIs) sensitive to the measured traits were calculated from the optical domain (VIS, NIR, and SWIR), and canopy surface temperature (CST) was calculated from the thermal infrared band using the mono-window algorithm. The leaf traits were used to examine the impact of bark beetle infestation on the infested trees and to explore the link between these traits and remote sensing data (CST and SVIs). The differences between healthy and infested samples regarding measured leaf traits were assessed using Student’s t test. The relative importance of the CST and SVIs for estimating measured leaf traits was evaluated based on the variable importance in projection (VIP) obtained from the partial least squares regression (PLSR) analysis. A temporal comparison was then made for SVIs with a VIP > 1, including CST, using statistical significance tests. The clustering method using a principal components analysis (PCA) was used to examine visually how well the two groups of sample plots (healthy and infested) are separated in 2-D space based on principal component scores. Finally, linear regression (LR) was used to generate the leaf traits maps using the SVI that have highest VIP score and then used to produce a stress map for the study area. The results revealed that all measured leaf traits were significantly different (p < 0.05) between healthy versus infested samples. Moreover, the study showed that CST was superior to the SVIs in detecting subtle canopy changes due to bark beetle infestation for the three months considered in this study. The results showed that CST is an essential variable for estimating measured leaf traits with VIP > 1, improving the results of clustering when used with other SVIs. Likewise, the stress map produced by CST and leaf traits well presented the infestation areas at the green attacked stage. The new insight offered by this study is that the stress induced by the early stage of bark beetle infestation is more pronounced by Landsat-8 thermal bands than the SVIs calculated from its optical bands. The potential of CST in detecting the green attack stage would have positive implications for forest practice.

AB - In this study, the early stage of European spruce bark beetle (Ips typographus, L.) infestation (so-called green attack) is investigated using Landsat-8 optical and thermal data. We conducted an extensive field survey in June and the beginning of July 2016, to collect field data measurements from several infested and healthy trees in the Bavarian Forest National Park (BFNP), Germany. In total, 157 trees were selected, and leaf traits (i.e. stomatal conductance, chlorophyll fluorescence, and water content) were measured. Three Landsat-8 images from May, July, and August 2016 were studied, representing an early stage, advanced stage, and post-infestation, respectively. Spectral vegetation indices (SVIs) sensitive to the measured traits were calculated from the optical domain (VIS, NIR, and SWIR), and canopy surface temperature (CST) was calculated from the thermal infrared band using the mono-window algorithm. The leaf traits were used to examine the impact of bark beetle infestation on the infested trees and to explore the link between these traits and remote sensing data (CST and SVIs). The differences between healthy and infested samples regarding measured leaf traits were assessed using Student’s t test. The relative importance of the CST and SVIs for estimating measured leaf traits was evaluated based on the variable importance in projection (VIP) obtained from the partial least squares regression (PLSR) analysis. A temporal comparison was then made for SVIs with a VIP > 1, including CST, using statistical significance tests. The clustering method using a principal components analysis (PCA) was used to examine visually how well the two groups of sample plots (healthy and infested) are separated in 2-D space based on principal component scores. Finally, linear regression (LR) was used to generate the leaf traits maps using the SVI that have highest VIP score and then used to produce a stress map for the study area. The results revealed that all measured leaf traits were significantly different (p < 0.05) between healthy versus infested samples. Moreover, the study showed that CST was superior to the SVIs in detecting subtle canopy changes due to bark beetle infestation for the three months considered in this study. The results showed that CST is an essential variable for estimating measured leaf traits with VIP > 1, improving the results of clustering when used with other SVIs. Likewise, the stress map produced by CST and leaf traits well presented the infestation areas at the green attacked stage. The new insight offered by this study is that the stress induced by the early stage of bark beetle infestation is more pronounced by Landsat-8 thermal bands than the SVIs calculated from its optical bands. The potential of CST in detecting the green attack stage would have positive implications for forest practice.

KW - ITC-ISI-JOURNAL-ARTICLE

KW - ITC-GOLD

UR - https://ezproxy2.utwente.nl/login?url=https://library.itc.utwente.nl/login/2019/isi/abdullah_sen.pdf

U2 - 10.3390/rs11040398

DO - 10.3390/rs11040398

M3 - Article

VL - 11

JO - Remote sensing

JF - Remote sensing

SN - 2072-4292

IS - 4

M1 - 398

ER -